Serotonin autoreceptors on dorsal raphe neurons: structure-activity relationships of tryptamine analogs.

نویسندگان

  • M A Rogawski
  • G K Aghajanian
چکیده

A series of indole-ethylamines were tested for their ability to suppress the spontaneous firing of single dorsal raphe serotonergic neurons in the rat. The compounds were all derivatives of either tryptamine or N,N-dimethyltryptamine possessing hydroxy or methoxy substituents on the benzene ring portion of the indole nucleus. Their activity was assessed using quantitative microiontophoresis or following systemic (intravenous) administration. The serotonin autoreceptor or so-called "S2 receptor" mediating the inhibition of raphe serotonergic neurons was found to exhibit a high degree of structural specificity among the closely related tryptamine analogs. The following structure-activity rules were demonstrated: (1) for either hydroxy or methoxy derivatives, the relative favorability of the ring positions conforms to the series 5 much greater than 4 greater than 6; (2) methoxy derivatives are more sensitive to a shift of the ring substituent from the 5- to the 4- or 6-positions than are hydroxy compounds; and (3) activity is enhanced by N,N-dimethylation. Furthermore, addition of a methyl group at the 7-position of 5-methoxy-N,N-dimethyltryptamine markedly reduces the activity of this potent agonist. Of the radioligands which label brain serotonin receptors, the pharmacological characteristics of D-[3H]lysergic acid diethylamide binding best correspond to those displayed by the S2 receptor as determined in the present physiological analysis, although sufficient data are not yet available to make a complete comparison.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preferential potentiation of the effects of serotonin uptake inhibitors by 5-HT1A receptor antagonists in the dorsal raphe pathway: role of somatodendritic autoreceptors.

5-HT1A autoreceptor antagonists enhance the effects of antidepressants by preventing a negative feedback of serotonin (5-HT) at somatodendritic level. The maximal elevations of extracellular concentration of 5-HT (5-HT(ext)) induced by the 5-HT uptake inhibitor paroxetine in forebrain were potentiated by the 5-HT1A antagonist WAY-100635 (1 mg/kg s.c.) in a regionally dependent manner (striatum ...

متن کامل

5-HT(1A) agonist potential of pindolol: electrophysiologic studies in the dorsal raphe nucleus and hippocampus.

BACKGROUND The ability of pindolol to block 5-HT(1A) autoreceptors on serotonin-containing neurons in the raphe nuclei is thought to underlie the clinical reports of enhanced efficacy and rate of improvement in depressed patients treated with pindolol/selective serotonin reuptake inhibitor (SSRI) combinations. Selectivity for somatodendritic 5-HT(1A) autoreceptors is a crucial requirement, as b...

متن کامل

Brexpiprazole Alters Monoaminergic Systems following Repeated Administration: an in Vivo Electrophysiological Study.

BACKGROUND Brexpiprazole was recently approved as adjunctive therapy for depression and treatment of schizophrenia in adults. To complement results from a previous study in which its acute effects were characterized, the present study assessed the effect of repeated brexpiprazole administration on monoaminergic systems. METHODS Brexpiprazole (1mg/kg, subcutaneous) or vehicle was administered ...

متن کامل

Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity.

It has been hypothesized that a deficit in serotonin may be a crucial determinant in the pathophysiology of major depression. Serotonin-1A receptors are located on serotonin cell bodies in the midbrain dorsal raphe (DR) nucleus, and the activation of these receptors inhibits the firing of serotonin neurons and diminishes the release of this neurotransmitter in the prefrontal cortex. Repeated tr...

متن کامل

Pharmacological Characterization of 5-HT1A Autoreceptor-Coupled GIRK Channels in Rat Dorsal Raphe 5-HT Neurons

G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 1 10  شماره 

صفحات  -

تاریخ انتشار 1981