Efficient Second Strand Cleavage during Holliday Junction Resolution by RuvC Requires Both Increased Junction Flexibility and an Exposed 5′ Phosphate
نویسندگان
چکیده
BACKGROUND Holliday junction (HJ) resolution is a critical step during homologous recombination. In Escherichia coli this job is performed by a member of the RNase H/Integrase superfamily called RuvC, whereas in Schizosaccharomyces pombe it has been attributed to the XPF family member Mus81-Eme1. HJ resolution is achieved through the sequential cleavage of two strands of like polarity at or close to the junction crossover point. RuvC functions as a dimer, whereas Mus81-Eme1 is thought to function as a dimer of heterodimers. However, in both cases the multimer contains two catalytic sites, which act independently and sequentially during the resolution reaction. To ensure that both strands are cleaved before the nuclease dissociates from the junction, the rate of second strand cleavage is greatly enhanced compared to that of the first. The enhancement of second strand cleavage has been attributed to the increased flexibility of the nicked HJ, which would facilitate rapid engagement of the second active site and scissile bond. Here we have investigated whether other properties of the nicked HJ are important for enhancing second strand cleavage. PRINCIPAL FINDINGS A comparison of the efficiency of cleavage of nicked HJs with and without a 5' phosphate at the nick site shows that a 5' phosphate is required for most of the enhancement of second strand cleavage by RuvC. In contrast Mus81-Eme1 cleaves nicked HJs with and without a 5' phosphate with equal efficiency, albeit there are differences in cleavage site selection. CONCLUSIONS Our data show that efficient HJ resolution by RuvC depends on the 5' phosphate revealed by incision of the first strand. This is a hitherto unappreciated factor in promoting accelerated second strand cleavage. However, a 5' phosphate is not a universal requirement since efficient cleavage by Mus81-Eme1 appears to depend solely on the increased junction flexibility that is developed by the first incision.
منابع مشابه
GEN1 promotes Holliday junction resolution by a coordinated nick and counter-nick mechanism
Holliday junctions (HJs) that physically link sister chromatids or homologous chromosomes are formed as intermediates during DNA repair by homologous recombination. Persistent recombination intermediates are acted upon by structure-selective endonucleases that are required for proper chromosome segregation at mitosis. Here, we have purified full-length human GEN1 protein and show that it promot...
متن کاملActivation of RuvC Holliday junction resolvase in vitro
The Escherichia coli RuvC protein is an endonuclease that resolves Holliday junctions. In vitro, the protein shows efficient structure-specific binding of Holliday junctions, yet the rate of junction resolution is remarkably low. We have mapped the sites of cleavage on a synthetic junction through which a crossover can branch migrate through 26 bp and find that > or = 90% of the junctions were ...
متن کاملResolution of Holliday junctions in genetic recombination: RuvC protein nicks DNA at the point of strand exchange.
The RuvC protein of Escherichia coli catalyzes the resolution of recombination intermediates during genetic recombination and the recombinational repair of damaged DNA. Resolution involves specific recognition of the Holliday structure to form a complex that exhibits twofold symmetry with the DNA in an open configuration. Cleavage occurs when strands of like polarity are nicked at the sequence ...
متن کاملCrystal structure of RuvC resolvase in complex with Holliday junction substrate
The key intermediate in genetic recombination is the Holliday junction (HJ), a four-way DNA structure. At the end of recombination, HJs are cleaved by specific nucleases called resolvases. In Gram-negative bacteria, this cleavage is performed by RuvC, a dimeric endonuclease that belongs to the retroviral integrase superfamily. Here, we report the first crystal structure of RuvC in complex with ...
متن کاملStructural asymmetry in the Thermus thermophilus RuvC dimer suggests a basis for sequential strand cleavages during Holliday junction resolution
Holliday junction (HJ) resolvases are structure-specific endonucleases that cleave four-way DNA junctions (HJs) generated during DNA recombination and repair. Bacterial RuvC, a prototypical HJ resolvase, functions as homodimer and nicks DNA strands precisely across the junction point. To gain insights into the mechanisms underlying symmetrical strand cleavages by RuvC, we performed crystallogra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009