Application of preprocessing filtering on Decision Tree C4.5 and rough set theory
نویسندگان
چکیده
This paper compares two artificial intelligence methods the Decision Tree C4.5 and Rough Set Theory on the stock market data. The Decision Tree C4.5 is reviewed with the Rough Set Theory. An enhanced window application is developed to facilitate the pre-processing filtering by introducing the attribute (feature) transformations, which allows users to input formulas and create new attributes. Also, the application produces three varieties of data set with delaying, averaging, and summation. The results prove the improvement of preprocessing by applying attribute (feature) transformations on Decision Tree C4.5. Moreover, the comparison between Decision Tree C4.5 and Rough Set Theory is based on the clarity, automation, accuracy, dimensionality, raw data, and speed, which is supported by the rules sets generated by both algorithms on three different sets of data.
منابع مشابه
Application of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملEvaluation of liquefaction potential based on CPT results using C4.5 decision tree
The prediction of liquefaction potential of soil due to an earthquake is an essential task in Civil Engineering. The decision tree is a tree structure consisting of internal and terminal nodes which process the data to ultimately yield a classification. C4.5 is a known algorithm widely used to design decision trees. In this algorithm, a pruning process is carried out to solve the problem of the...
متن کاملApplication of rough set and decision tree for characterization of premonitory factors of low seismic activity
This paper presents a machine learning approach to characterizing premonitory factors of earthquake. The characteristic asymmetric distribution of seismic events and sampling limitations make it difficult to apply the conventional statistical predictive techniques. The paper shows that inductive machine learning techniques such as rough set theory and decision tree (C4.5 algorithm) allows devel...
متن کاملMachine Discovery of Static Software Reuse Potential Metrics
This paper reports a study to identify static software reuse potential metrics that can be used to classify C source code into reusable and non-reusable classes. The techniques used exploit a decision tree inductive machine learning and rough sets theory. The results we obtained show that the former technique, as implemented by C4.5, produces a much more accurate set of classification rules tha...
متن کاملHuman Talent Prediction in HRM using C4.5 Classification Algorithm
In HRM, among the challenges for HR professionals is to manage an organization’s talents, especially to ensure the right person for the right job at the right time. Human talent prediction is an alternative to handle this issue. Due to that reason, classification and prediction in data mining which is commonly used in many areas can also be implemented to human talent. There are many classifica...
متن کامل