Monitoring binary outcomes using risk-adjusted charts: a comparative study.

نویسندگان

  • Edit Gombay
  • Abdulkadir A Hussein
  • Stefan H Steiner
چکیده

Monitoring binary outcomes when evaluating health care performance has recently become common. Classical statistical methodologies such as cumulative sum (CUSUM) charts have been refined and used for this purpose. For instance, the risk-adjusted CUSUM chart (RA-CUSUM) for monitoring binary outcomes was proposed for monitoring 30-day mortality following cardiac surgery. The RA-CUSUM inherits optimality properties of the original CUSUM charts in the sense of signaling early when there is change. However, although the RA-CUSUM is a powerful monitoring tool, it will always eventually signal a change with probability 1 even when there is no real change. In other words, the probability of a type I error for the RA-CUSUM is 1. It also turns out that, because of the skewed distribution of the run lengths of the RA-CUSUM, the median is often well below the mean, and as a consequence more than half of all its false alarms occur before the designed average run length. In addition, when the change to be detected occurs at a later time in the series of observations being monitored, the rate of false alarms increases, and the RA-CUSUM may not be appropriate. Therefore, if the price of false alarms is high, it is preferable to use methods that control the rate of false alarms. In this paper, we propose alternative sequential curtailed and risk-adjusted charts that control the type I error rate in the context of monitoring 30-day mortality following cardiac surgery. We explore the merits of each of these methodologies in terms of average run lengths as well as in terms of type I error probabilities, and we compare them to the RA-CUSUM chart. We illustrate the methodologies by using data on monitoring performance of seven surgeons from a medical center.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk-adjusted control charts based on LR-fuzzy data

Control charts are widely used in industrial processes as well as in health sciences and particularly for monitoring the performance of cardiac surgeon or a group of surgeons based on the preoperative risk of patients. Since the preoperative risk is a vague and nonprecise variable and the anesthesiologists after checking how many risk factors a patient has, determine the risk of mortality befor...

متن کامل

Phase I Risk-Adjusted Control Charts for Monitoring Surgical Performance by Considering Categorical Covariates

In recent years risk-adjusted control charts have been increasingly studied for monitoring surgical outcomes by accounting for patients’ health conditions prior to surgery. However, most existing research focuses on phase II monitoring, and very little work has been done on phase I control of surgical outcomes. In this paper, a general phase I risk-adjusted control chart is proposed for monitor...

متن کامل

Using Regression based Control Limits and Probability Mixture Models for Monitoring Customer Behavior

In order to achieve the maximum flexibility in adaptation to ever changing customer’s expectations in customer relationship management, appropriate measures of customer behavior should be continually monitored. To this end, control charts adjusted for buyer’s/visitor’s prior intention to repurchase or visit again are suitable means taking into account the heterogeneity across customers. In the ...

متن کامل

Bayesian Estimation of Change Point in Phase One Risk Adjusted Control Charts

Use of risk adjusted control charts for monitoring patients’ surgical outcomes is now popular.These charts are developed based on considering the patient’s pre-operation risks. Change point detection is a crucial problem in statistical process control (SPC).It helpsthe managers toanalyzeroot causes of out-of-control conditions more effectively. Since the control chart signals do not necessarily...

متن کامل

A risk adjusted self-starting Bernoulli CUSUM control chart with dynamic probability control limits

Usually, in monitoring schemes the nominal value of the process parameter is assumed known. However, this assumption is violated owing to costly sampling and lack of data particularly in healthcare systems. On the other hand, applying a fixed control limit for the risk-adjusted Bernoulli chart causes to a variable in-control average run length performance for patient populations with dissimilar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 30 23  شماره 

صفحات  -

تاریخ انتشار 2011