Flower primordium formation at the Arabidopsis shoot apex: quantitative analysis of surface geometry and growth.

نویسنده

  • Dorota Kwiatkowska
چکیده

Geometry changes, especially surface expansion, accompanying flower primordium formation are investigated at the reproductive shoot apex of Arabidopsis with the aid of a non-invasive replica method and a 3-D reconstruction algorithm. The observed changes are characteristic enough to differentiate the early development of flower primordium in Arabidopsis into distinct stages. Primordium formation starts from the fast and anisotropic growth at the periphery of the shoot apical meristem, with the maximum extension in the meridional direction. Surprisingly, the primordium first becomes a shallow crease, and it is only later that this shape changes into a bulge. The bulge is formed from the shallow crease due to slower and less anisotropic growth than at the onset of primordium formation. It is proposed that the shallow crease is the first axil, i.e. the axil of a putative rudimentary bract subtending the flower primordium proper, while the flower primordium proper is the bulge formed at the bottom of this axil. At the adaxial side of the bulge, the second axil (a narrow and deep crease) is formed setting the boundary between the flower primordium proper and the shoot apical meristem. Surface growth, leading to the formation of the second axil, is slow and anisotropic. This is similar to the previously described growth pattern at the boundary of the leaf primordium in Anagallis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphogenesis at the inflorescence shoot apex of Anagallis arvensis: surface geometry and growth in comparison with the vegetative shoot

Quantitative analysis of geometry and surface growth based on the sequential replica method is used to compare morphogenesis at the shoot apex of Anagallis arvensis in the reproductive and vegetative phases of development. Formation of three types of lateral organs takes place at the Anagallis shoot apical meristem (SAM): vegetative leaf primordia are formed during the vegetative phase and leaf...

متن کامل

Influence of clavata3-2 mutation on early flower development in Arabidopsis thaliana: quantitative analysis of changing geometry

Early development of the flower primordium has been studied in Arabidopsis thaliana clavata3-2 (clv3-2) plants with the aid of sequential in vivo replicas and longitudinal microtome sections. Sequential replicas show that, although there is no regular phyllotaxis in the clv3-2 inflorescence shoot apex, the sites of new primordium formation are, to a large extent, predictable. The primordium alw...

متن کامل

Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana.

Precise knowledge of spatial and temporal patterns of cell division, including number and orientation of divisions, and knowledge of cell expansion, is central to understanding morphogenesis. Our current knowledge of cell division patterns during plant and animal morphogenesis is largely deduced from analysis of clonal shapes and sizes. But such an analysis can reveal only the number, not the o...

متن کامل

Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L.

A non-destructive replica method and a 3-D reconstruction algorithm are used to analyse the geometry and expansion of the shoot apex surface. Surface expansion in the central zone of the apex is slow and nearly isotropic while surface expansion in the peripheral zone is more intense and more anisotropic. Within the peripheral zone, the expansion rate, expansion anisotropy, and the direction of ...

متن کامل

GA4 Is the Active Gibberellin in the Regulation of LEAFY Transcription and Arabidopsis Floral Initiation W

Flower initiation in Arabidopsis thaliana under noninductive short-day conditions is dependent on the biosynthesis of the plant hormone gibberellin (GA). This dependency can be explained, at least partly, by GA regulation of the flower meristem identity gene LEAFY (LFY) and the flowering time gene SUPPRESSOR OF CONSTANS1. Although it is well established that GA4 is the active GA in the regulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 57 3  شماره 

صفحات  -

تاریخ انتشار 2006