On Krylov Subspace Approximations to Thematrix Exponential

نویسنده

  • MARLIS HOCHBRUCK
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Krylov subspace exponential time domain solution of Maxwell's equations in photonic crystal modeling

The exponential time integration, i.e., time integrationwhich involves thematrix exponential, is an attractive tool for time domain modeling involving Maxwell’s equations. However, its application in practice often requires a substantial knowledge of numerical linear algebra algorithms, such as Krylov subspace methods. In this note we discuss exponential Krylov subspace time integrationmethods ...

متن کامل

Analysis of Some Krylov Subspace Approximations to the Matrix Exponential Operator

In this note we present a theoretical analysis of some Krylov subspace approximations to the matrix exponential operation exp(A)v and establish a priori and a posteriori error estimates. Several such approximations are considered. The main idea of these techniques is to approximately project the exponential operator onto a small Krylov subspace and carry out the resulting small exponential matr...

متن کامل

Weighted Quadrature in Krylov Methods

The Krylov subspace approximation techniques described by Gallopoulos and Saad 2] for the numerical solution of parabolic partial diierential equations are extended. By combining the weighted quadrature methods of Lawson and Swayne 6] with Krylov subspace approximations, three major improvements are made. First, problems with time-dependent sources or boundary conditions may be solved more eeci...

متن کامل

Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials

We have implemented a numerical code (ReLPM, Real Leja Points Method) for polynomial interpolation of the matrix exponential propagators exp (∆tA)v and φ(∆tA)v, φ(z) = (exp (z) − 1)/z. The ReLPM code is tested and compared with Krylov-based routines, on large scale sparse matrices arising from the spatial discretization of 2D and 3D advection-diffusion equations.

متن کامل

Krylov Subspace Approximation for TEM Simulation in the Time Domain

Forward transient electromagnetic modeling requires the numerical solution of a linear constant-coefficient initial-value problem for the quasi-static Maxwell equations. After discretization in space this problem reduces to a large system of ordinary differential equations, which is typically solved using finite-difference time-stepping. We compare standard time-stepping schemes such as the exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010