Biharmonic Green Functions on Homogeneous Trees
نویسندگان
چکیده
The study of biharmonic functions under the ordinary (Euclidean) Laplace operator on the open unit disk D in C arises in connection with plate theory, and in particular, with the biharmonic Green functions which measure, subject to various boundary conditions, the deflection at one point due to a load placed at another point. A homogeneous tree T is widely considered as a discrete analogue of the unit disk endowed with the Poincaré metric. The usual Laplace operator on T corresponds to the hyperbolic Laplacian. In this work, we consider a bounded metric on T for which T is relatively compact and use it to define a flat Laplacian which plays the same role as the ordinary Laplace operator on D. We then study the simply-supported and the clamped biharmonic Green functions with respect to both Laplacians. Mathematics Subject Classification (2000). 31C20.
منابع مشابه
Potential theory on trees and multiplication operators
The article surveys a number of potential theory results in the discrete setting of trees and in an application to complex analysis. On trees for which the associated random walk is recurrent, we discuss Riesz decomposition, flux, a type of potential called H-potential, and present a new result dealing with the boundary behaviour of H-potentials on a specific recurrent homogeneous tree. On gene...
متن کاملOn The Mean Convergence of Biharmonic Functions
Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...
متن کاملBiharmonic Extensions on Trees without Positive Potentials
Let T be a tree rooted at e endowed with a nearest-neighbor transition probability that yields a recurrent random walk. We show that there exists a function K biharmonic off e whose Laplacian has potential theoretic importance and, in addition, has the following property: Any function f on T which is biharmonic outside a finite set has a representation, unique up to addition of a harmonic funct...
متن کاملFirst Principles Derivation of Displacement and Stress Function for Three-Dimensional Elastostatic Problems, and Application to the Flexural Analysis of Thick Circular Plates
In this study, stress and displacement functions of the three-dimensional theory of elasticity for homogeneous isotropic bodies are derived from first principles from the differential equations of equilibrium, the generalized stress – strain laws and the geometric relations of strain and displacement. It is found that the stress and displacement functions must be biharmonic functions. The deriv...
متن کاملEstimating Height and Diameter Growth of Some Street Trees in Urban Green Spaces
Estimating urban trees growth, especially tree height is very important in urban landscape management. The aim of the study was to predict of tree height base on tree diameter. To achieve this goal, 921 trees from five species were measured in five areas of Mashhad city in 2014. The evaluated trees were ash tree (Fraxinus species), plane tree (Platanus hybrida), white mulberry (Morus alba), ail...
متن کامل