Microbial Electrolytic Carbon Capture for Carbon Negative and Energy Positive Wastewater Treatment.

نویسندگان

  • Lu Lu
  • Zhe Huang
  • Greg H Rau
  • Zhiyong Jason Ren
چکیده

Energy and carbon neutral wastewater management is a major goal for environmental sustainability, but current progress has only reduced emission rather than using wastewater for active CO2 capture and utilization. We present here a new microbial electrolytic carbon capture (MECC) approach to potentially transform wastewater treatment to a carbon negative and energy positive process. Wastewater was used as an electrolyte for microbially assisted electrolytic production of H2 and OH(-) at the cathode and protons at the anode. The acidity dissolved silicate and liberated metal ions that balanced OH(-), producing metal hydroxide, which transformed CO2 in situ into (bi)carbonate. Results using both artificial and industrial wastewater show 80-93% of the CO2 was recovered from both CO2 derived from organic oxidation and additional CO2 injected into the headspace, making the process carbon-negative. High rates and yields of H2 were produced with 91-95% recovery efficiency, resulting in a net energy gain of 57-62 kJ/mol-CO2 captured. The pH remained stable without buffer addition and no toxic chlorine-containing compounds were detected. The produced (bi)carbonate alkalinity is valuable for wastewater treatment and long-term carbon storage in the ocean. Preliminary evaluation shows promising economic and environmental benefits for different industries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing o...

متن کامل

Synthesis and Application of Functionalized Carbon Nanotube Infused Polymer Membrane (fCNT/PSF/PVA) for Treatment of Phenol-Containing Wastewater

In this study, polymer composite membranes comprising carbon nanotube (CNT), polysulfone (PSF) and polyvinyl alcohol (PVA) were synthesized via the phase inversion method and used to remove phenol from the phenol-containing wastewater. The fabricated membranes were reinforced with the functionalized carbon nanotubes (fCNTs) and coated with PVA to enhance their mechanical strength and anti-fouli...

متن کامل

Characterization and Kinetic study of PAH–degrading Sphingopyxis ummariensis bacteria isolated from a petrochemical wastewater treatment plant

The expansion of a microbial bank for the degradation of polycyclic aromatic hydrocarbons (PAHs) is crucial for removal of these persistent pollutants. In this study, five gram-negative, aerobic, non-fermentative bacterial strains (III-R3, IV-P11, IV-P13, IV-R13, and V-P18) were isolated from the activated sludge of a petrochemical wastewater treatment plant using enrichment pro­ tocol based on...

متن کامل

A wind-powered BDD electrochemical oxidation process for the removal of herbicides.

In the search for greener treatment technologies, this work studies the coupling of a wind turbine energy supply with an electrolytic cell (CWTEC device) for the remediation of wastewater polluted with pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The discontinuous and unforeseeable supply of energy is the main challenge inspiring this new proposal, which aims at reducing the environmental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 49 13  شماره 

صفحات  -

تاریخ انتشار 2015