Random attractors for a class of stochastic partial differential equations driven by general additive noise

نویسندگان

  • Benjamin Gess
  • Wei Liu
  • Michael Röckner
چکیده

The existence of random attractors for a large class of stochastic partial differential equations (SPDE) driven by general additive noise is established. The main results are applied to various types of SPDE, as e.g. stochastic reaction-diffusion equations, the stochastic p-Laplace equation and stochastic porous media equations. Besides classical Brownian motion, we also include space-time fractional Brownian Motion and space-time Lévy noise as admissible random perturbations. Moreover, cases where the attractor consists of a single point are considered and bounds for the speed of attraction are obtained. AMS Subject Classification: 35B41, 60H15, 37L30, 35B40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

upper semicontinuity of attractors for small random perturbations of dynamical systems

The relationship between random attractors and global attractors for dynamical systems is studied. If a partial differential equation is perturbed by an −small random term and certain hypotheses are satisfied, the upper semicontinuity of the random attractors is obtained as goes to zero. The results are applied to the Navier-Stokes equations and a problem of reaction-diffusion type, both pertur...

متن کامل

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields

We prove an existence and uniqueness result for a general class of backward stochastic partial differential equations with jumps. This is a type of equations which appear as adjoint equations in the maximum principle approach to optimal control of systems described by stochastic partial differential equations driven by Lévy processes.

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010