Fault Detection in Complex Distribution Network Based on Hilbert-Huang Transform
نویسندگان
چکیده
Traditional distribution network fault location methods often cannot be effectively applied for the structure of the branch in complex distribution network. A new accurate fault location for the single-phaseground fault in complex distribution network with structure of the branch based on Hilbert-Huang transform was proposed in this paper. First, the distribution network was modeled. The faults on each branch were simulated. The energy characteristics under the branch in a particular frequency band were identified by HHT. Then these energy characteristics were used to train artificial neural networks (ANN).When the energy characteristics of actual fault are inputted, the trained neural network can output the malfunction branch. When the fault branch was determined, using the online fault feature matching method, combined with the genetic algorithm, the precise determination of the distance to fault location in the fault branch can be completed. With combinations of signal processing-Hilbert-Huang transform, artificial neural network and genetic algorithm, the entirely new method was proposed to deal with the problem of fault location in distribution network in this article. The results showed that the method has a good precision and apply to the small current grounding system.
منابع مشابه
Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملDetection of high impedance faults in distribution networks using Discrete Fourier Transform
In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملFault Detection Method on a Compressor Rotor Using the Phase Variation of the Vibration Signal
The aim of this work is the application of the phase variation in vibration signal for fault detection on rotating machines. The vibration signal from the machine is modulated in amplitude and phase around a carrier frequency. The modulating signal in phase is determined after the Hilbert transform and is used, with the Fast Fourier Transform, to extract the harmonics spectrum in phase. This me...
متن کاملPower line fault location using the Complex Space-Phasor and Hilbert-Huang Transform
Fault location finding in power system is very important problem in power system monitoring. Moreover, demand for high grid availability are crucial for TSO's contracts. Many scientific papers are published on mentioned theme, along with efforts in transmission and distribution system operators about improving fault location accuracy. Recently, signal processing methods like Wavelets and Hilber...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013