A Theoretical and Empirical Analysis of Convergence Related Particle Swarm Optimization
نویسندگان
چکیده
In this paper an extensive theoretical and empirical analysis of recently introduced Particle Swarm Optimization algorithm with Convergence Related parameters (CR-PSO) is presented. The convergence of the classical PSO algorithm is addressed in detail. The conditions that should be imposed on parameters of the algorithm in order for it to converge in mean-square have been derived. The practical implications of these conditions have been discussed. Based on these implications a novel, recently proposed parameterization scheme for the PSO has been introduced. The novel optimizer is tested on an extended set of benchmarks and the results are compared to the PSO with time-varying acceleration coefficients (TVAC-PSO) and the standard genetic algorithm (GA). Key-Words: Global Optimization, Swarm Intelligence, Evolutionary Computation, Particle Swarm Optimization (PSO), Algorithm Analysis
منابع مشابه
Chaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
متن کاملAn Empirical Analysis of Convergence Related Particle Swarm Optimization
In this paper an extensive empirical analysis of recently introduced Particle Swarm Optimization algorithm with Convergence Related parameters (CR-PSO) is presented. The algorithm is tested on extended set of benchmarks and the results are compared to the PSO with time-varying acceleration coefficients (TVAC-PSO) and the standard genetic algorithm (GA). Key-Words: Global Optimization, Particle ...
متن کاملPARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES
Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...
متن کاملA New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement
In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the combination of the conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...
متن کاملConvergence analysis and improvements of quantum-behaved particle swarm optimization
Motivated by concepts in quantum mechanics and particle swarm optimization (PSO), quantum-behaved particle swarm optimization (QPSO) was proposed as a variant of PSO with better global search ability. Although it has been shown to perform well in finding optimal solutions for many optimization problems, there has so far been little theoretical analysis on its convergence and performance. This p...
متن کامل