Designing nacre-like materials for simultaneous stiffness, strength and toughness_ Optimum materials, composition, microstructure and size
نویسنده
چکیده
Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of highperformance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Dimensional analysis and parametric studies for designing artificial nacre.
Nacre, the iridescent material found in Abalone shells, exhibits remarkable strength and toughness despite its composition of over 95% brittle ceramic. Its hierarchical structure over multiple length scales gives rise to its increase in toughness despite its material composition. In this work we develop a computational model of composites incorporating key morphological features of nacre's micr...
متن کامل6th World Congresses of Structural and Multidisciplinary Optimization
Natural materials such as bone, tooth, and nacre are nano-composites of proteins and minerals with superior stiffness and toughness. At the most elementary structure level, bio-composites exhibit a generic microstructure consisting of staggered mineral bricks wrapped by soft protein in nanoscale. Why does nature design building blocks of biological materials in this form? Can we reproduce this ...
متن کاملToughening mechanisms in bioinspired multilayered materials.
Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mech...
متن کاملIonic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics.
Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high-performance materials. Herein, we demonstrate that ionic supramolecular bonds, introduced by infiltration of di...
متن کاملThe Micromechanics of Biological and Biomimetic Staggered Composites
Natural materials such as bone, tooth and nacre achieve attractive properties through the “staggered structure”, which consists of stiff, parallel inclusions of large aspect ratio bonded together by a more ductile and tougher matrix. This seemingly simple structure displays sophisticated micromechanics which lead to unique combinations of stiffness, strength and toughness. In this article we mo...
متن کامل