Substate tying with combined parameter training and reduction in tied-mixture HMM design
نویسندگان
چکیده
Two approaches are proposed for the design of tied-mixture hidden Markov models (TMHMM). One approach improves parameter sharing via partial tying of TMHMM states. To facilitate tying at the substate level, the state emission probabilities are constructed in two stages or, equivalently, are viewed as a “mixture of mixtures of Gaussians.” This paradigm allows, and is complemented with, an optimization technique to seek the best complexity-accuracy tradeoff solution, which jointly exploits Gaussian density sharing and substate tying. Another approach to enhance model training is combined training and reduction of model parameters. The procedure starts by training a system with a large universal codebook of Gaussian densities. It then iteratively reduces the size of both the codebook and the mixing coefficient matrix, followed by parameter re-training. The additional cost in design complexity is modest. Experimental results on the ISOLET database and its E-set subset show that substate tying reduces the classification error rate by over 15%, compared to standard Gaussian sharing and whole-state tying. TMHMM design with combined training and reduction of parameters reduces the classification error rate by over 20% compared to conventional TMHMM design. When the two proposed approaches were integrated, 25% error rate reduction over TMHMM with whole-state tying was achieved.
منابع مشابه
A Tied-Mixture 2-D HMM Face Recognition System
In this paper, a simplified 2-D second-order Hidden Markov Model (HMM) with tied state mixtures is applied to the face recognition problem. The mixture of the model states is fully-tied across all models for lower complexity. Tying HMM parameters is a well-known solution for the problem of insufficient training data leading to nonrobust estimation. We show that parameter tying in HMM also enhan...
متن کاملSub-state tying in tied mixture hidden Markov models
An approach is proposed for partial tying of states of tiedmixture hidden Markov models. To facilitate tying at the substate level, the state emission probabilities are constructed in two stages, or equivalently, are viewed as a ‘‘mixture of mixtures of Gaussians.’’ This paradigm allows, and is complemented with, an optimization technique to seek the best complexity-accuracy tradeoff solution, ...
متن کاملOptimal tying of HMM mixture densities using decision trees
Decision trees have been used in speech recognition with large numbers of context-dependentHMM models, to provide models for contexts not seen in training. Trees are usually created by successive node splitting decisions, based on how well a single Gaussian or Poisson density fits the data associated with a node. We introduce a new node splitting criterion, derived from the maximum likelihood f...
متن کاملParameter tying and gaussian clustering for faster, better, and smaller speech recognition
We present a new view of hidden Markov model (HMM) state tying, showing that the accuracy of phonetically tied mixture (PTM) models is similar to, or better than, that of the more typical stateclustered HMM systems. The PTM models require fewer Gaussian distance computations during recognition, and can lead to recognition speedups. We describe a per-phone Gaussian clustering algorithm that auto...
متن کاملNonreciprocal data sharing in estimating HMM parameters
Parameter tying is often used in large vocabulary continuous speech recognition (LVCSR) systems to balance the model resolution and generalizability. However, one consequence of tying is that the differences among tied constructs are ignored. Parameter tying can be alternatively viewed as reciprocal data sharing in that a tied construct uses data associated with all others in its tiedclass. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Speech and Audio Processing
دوره 10 شماره
صفحات -
تاریخ انتشار 2002