Moduli of regularity and rates of convergence for Fejér monotone sequences
نویسندگان
چکیده
In this paper we introduce the concept of modulus of regularity as a tool to analyze the speed of convergence, including the finite termination, for classes of Fejér monotone sequences which appear in fixed point theory, monotone operator theory, and convex optimization. This concept allows for a unified approach to several notions such as metric subregularity, Hölder regularity, weak sharp minima etc., as well as to obtain rates of convergence for Picard iterates, the Mann algorithm, the proximal point algorithm and the cyclic algorithm. As a byproduct we obtain a quantitative version of the well-known fact that for a convex lower semi-continuous function the set of minimizers coincides with the set of zeros of its subdifferential and the set of fixed points of its resolvent. MSC: 41A52; 41A65; 53C23; 03F10
منابع مشابه
Quantitative results on Fejér monotone sequences
We provide in a unified way quantitative forms of strong convergence results for numerous iterative procedures which satisfy a general type of Fejér monotonicity where the convergence uses the compactness of the underlying set. These quantitative versions are in the form of explicit rates of so-called metastability in the sense of T. Tao. Our approach covers examples ranging from the proximal p...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملFaster Convergence Rates of Relaxed Peaceman-Rachford and ADMM Under Regularity Assumptions
Splitting schemes are a class of powerful algorithms that solve complicated monotone inclusion and convex optimization problems that are built from many simpler pieces. They give rise to algorithms in which the simple pieces of the decomposition are processed individually. This leads to easily implementable and highly parallelizable algorithms, which often obtain nearly state-of-the-art perform...
متن کاملExistence and convergence results for monotone nonexpansive type mappings in partially ordered hyperbolic metric spaces
We present some existence and convergence results for a general class of nonexpansive mappings in partially ordered hyperbolic metric spaces. We also give some examples to show the generality of the mappings considered herein.
متن کامل