Half-isomorphisms of Moufang Loops
نویسنده
چکیده
We prove that if the squaring map in the factor loop of a Moufang loop Q over its nucleus is surjective, then every half-isomorphism of Q onto a Moufang loop is either an isomorphism or an anti-isomorphism. This generalizes all earlier results in this vein.
منابع مشابه
The Structure of Free Automorphic Moufang Loops
We describe the structure of a free loop of rank n in the variety of automorphic Moufang loops as a subdirect product of a free group and a free commutative Moufang loop, both of rank n. In particular, the variety of automorphic Moufang loops is the join of the variety of groups and the variety of commutative Moufang loops.
متن کاملMoufang Loops with Commuting Inner Mappings
We investigate the relation between the structure of a Moufang loop and its inner mapping group. Moufang loops of odd order with commuting inner mappings have nilpotency class at most two. 6-divisible Moufang loops with commuting inner mappings have nilpotency class at most two. There is a Moufang loop of order 2 with commuting inner mappings and of nilpotency class three.
متن کاملPrimary Decompositions in Varieties of Commutative Diassociative Loops
The decomposition theorem for torsion abelian groups holds analogously for torsion commutative diassociative loops. With this theorem in mind, we investigate commutative diassociative loops satisfying the additional condition (trivially satisfied in the abelian group case) that all nth powers are central, for a fixed n. For n = 2, we get precisely commutative C loops. For n = 3, a prominent var...
متن کاملMoufang Loops of Small Order
The main result of this paper is the determination of all nonassociative Moufang loops of orders *31. Combinatorial type methods are used to consider a number of cases which lead to the discovery of 13 loops of the type in question and prove that there can be no others. All of the loops found are isomorphic to all of their loop isotopes, are solvable, and satisfy both Lagrange's theorem and Syl...
متن کاملOn Moufang A-loops
In a series of papers from the 1940’s and 1950’s, R.H. Bruck and L.J. Paige developed a provocative line of research detailing the similarities between two important classes of loops: the diassociative A-loops and the Moufang loops ([1]). Though they did not publish any classification theorems, in 1958, Bruck’s colleague, J.M. Osborn, managed to show that diassociative, commutative A-loops are ...
متن کامل