Autosomal recessive form of periventricular heterotopia.
نویسندگان
چکیده
BACKGROUND Familial periventricular heterotopia (PH) represents a disorder of neuronal migration resulting in multiple gray matter nodules along the lateral ventricular walls. Prior studies have shown that mutations in the filamin A (FLNA) gene can cause PH through an X-linked dominant inheritance pattern. OBJECTIVE To classify cortical malformation syndromes associated with PH. METHODS Analyses using microsatellite markers directed toward genomic regions of FLNA and to a highly homologous autosomal gene, FLNB, were performed on two pedigrees to evaluate for linkage with either filamin gene. RESULTS Two consanguineous pedigrees with PH that suggest an autosomal recessive inheritance pattern are reported. MRI of the brain revealed periventricular nodules of cerebral gray matter intensity, typical for PH. Seizures or developmental delay appeared to be a common presenting feature. Microsatellite analysis suggested no linkage to FLNA or FLNB. CONCLUSIONS Autosomal recessive PH is another syndromic migrational disorder, distinct from X-linked dominant PH. Further classification of these different syndromes will provide an approach for genetic evaluation.
منابع مشابه
Malformations of the Cerebral Cortex as a Cause of Mental Retardation and Epilepsy: Anatomoclinical and Genetic Spectrum*
The malformations of the cerebral cortex represent a major cause of developmental disabilities, severe epilepsy and reproductive disadvantage. The advent of high resolution MRI techniques has facilitated the in vivo identification of a large group of cortical malformation phenotypes. Several malformation syndromes caused by abnormal cortical development have been recognized and specific causati...
متن کاملPeriventricular heterotopia, mental retardation, and epilepsy associated with 5q14.3-q15 deletion.
BACKGROUND Periventricular heterotopia (PH) is an etiologically heterogeneous disorder characterized by nodules of neurons ectopically placed along the lateral ventricles. Most affected patients have seizures and their cognitive level varies from normal to severely impaired. At present, two genes have been identified to cause PH when mutated. Mutations in FLNA (Xq28) and ARFGEF2 (20q13) are res...
متن کاملEpileptogenic brain malformations: clinical presentation, malformative patterns and indications for genetic testing
We review here those malformations of the cerebral cortex which are most often observed in epilepsy patients, for which a genetic basis has been elucidated or is suspected and give indications for genetic testing. There are three forms of lissencephaly (agyria-pachygyria) resulting from mutations of known genes, which can be distinguished because of their distinctive imaging features. They acco...
متن کاملEtiological heterogeneity of familial periventricular heterotopia and hydrocephalus.
Periventricular heterotopia (PH) represents a neuronal migration disorder that results in gray matter nodules along the lateral ventricles beneath an otherwise normal appearing cortex. While prior reports have shown that mutations in the filamin A (FLNA) gene can cause X-linked dominant PH, an increasing number of studies suggest the existence of additional PH syndromes. Further classification ...
متن کاملInterpeduncular heterotopia in Joubert syndrome: a previously undescribed MR finding.
The so-called molar tooth sign is the radiologic hallmark of JSRD. Joubert syndrome is a rare, most often autosomal-recessive disorder with a characteristic malformation of the midhindbrain. We describe 3 patients with JSRD and the additional MR finding of tissue resembling heterotopia in the interpeduncular fossa, which in one patient was combined with a more extensive intramesencephalic heter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurology
دوره 60 7 شماره
صفحات -
تاریخ انتشار 2003