Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B
نویسندگان
چکیده
UNLABELLED Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. IMPORTANCE Filamentous cyanobacteria belonging to the genus Nostoc are widespread and ecologically important in freshwater, yet little is known about the genomic content of their viruses. Here we report the first genomic analysis of cyanophages infecting filamentous freshwater cyanobacteria, revealing that their gene content is unlike that of other cyanophages. In addition to sharing many gene homologues with freshwater cyanobacteria, cyanophage N-1 encodes a CRISPR array and expresses it upon infection. Also, both viruses contain a DNA polymerase B-encoding gene with high similarity to genes found in proteobacterial plasmids of filamentous cyanobacteria. The observation that phages can acquire CRISPRs from their hosts suggests that phages can also move them among hosts, thereby conferring resistance to competing phages. The presence in these cyanophages of CRISPR and DNA polymerase B sequences, as well as a suite of other host-related genes, illustrates the long and complex evolutionary history of these viruses and their hosts.
منابع مشابه
Nitrate assimilation genes of the marine diazotrophic, filamentous cyanobacterium Trichodesmium sp. strain WH9601.
A 4.0-kb DNA fragment of Trichodesmium sp. strain WH9601 contained gene sequences encoding the nitrate reduction enzymes, nirA and narB. A third gene positioned between nirA and narB encodes a putative membrane protein with similarity to the nitrate permeases of Bacillus subtilis (NasA) and Emericella nidulans (CrnA). The gene was shown to functionally complement a DeltanasA mutant of B. subtil...
متن کاملNucleotide sequence of the replication region of the Nostoc PCC 7524 plasmid pDU1.
The cyanobacteria are an ancient and diverse group of prokaryotes capable of oxygenic photosynthesis and plasmids have been found in both unicellular and filamentous types. Currently, all plasmids are cryptic and only one plasmid, pUH24, from a unicellular non-nitrogen-fixing cyanobacterium, has been sequenced (1). Comparative searches (TFASTA, FASTA (2)) of pUH24 sequences did not show similar...
متن کاملA Report on Finding a New Peptide Aldehyde from Cyanobacterium Nostoc sp. Bahar M by LC-MS and Marfey’s Analysis
Background: Cyanobacteria have a worldwide distribution in the terrestrial habitats, occurring predominantly on the surface of the soils, stones, rocks, and trees, practically in moist, neutral or alkaline aeries. The unique natural and bioactive compounds from cyanobacteria with various biological activities and an extensive range of chemical classes have a significant capabil...
متن کاملGenomic and proteomic characterization of two novel siphovirus infecting the sedentary facultative epibiont cyanobacterium Acaryochloris marina.
Acaryochloris marina is a symbiotic species of cyanobacteria that is capable of utilizing far-red light. We report the characterization of the phages A-HIS1 and A-HIS2, capable of infecting Acaryochloris. Morphological characterization of these phages places them in the family Siphoviridae. However, molecular characterization reveals that they do not show genetic similarity with any known sipho...
متن کاملDraft Genome Sequences of Two Benthic Cyanobacteria, Oscillatoriales USR 001 and Nostoc sp. MBR 210, Isolated from Tropical Freshwater Lakes
Genomes of two filamentous benthic cyanobacteria were obtained from cocultures obtained from two freshwater lakes. The cultures were obtained by first growing cyanobacterial trichome on solid medium, followed by subculturing in freshwater media. Subsequent shotgun sequencing, de novo assembly, and genomic binning yielded almost complete genomes of Oscillatoriales USR 001 and Nostoc sp. MBR 210.
متن کامل