Neural control of lengthening contractions.
نویسندگان
چکیده
A number of studies over the last few decades have established that the control strategy employed by the nervous system during lengthening (eccentric) differs from those used during shortening (concentric) and isometric contractions. The purpose of this review is to summarize current knowledge on the neural control of lengthening contractions. After a brief discussion of methodological issues that can confound the comparison between lengthening and shortening actions, the review provides evidence that untrained individuals are usually unable to fully activate their muscles during a maximal lengthening contraction and that motor unit activity during submaximal lengthening actions differs from that during shortening actions. Contrary to common knowledge, however, more recent studies have found that the recruitment order of motor units is similar during submaximal shortening and lengthening contractions, but that discharge rate is systematically lower during lengthening actions. Subsequently, the review examines the mechanisms responsible for the specific control of maximal and submaximal lengthening contractions as reported by recent studies on the modulation of cortical and spinal excitability. As similar modulation has been observed regardless of contraction intensity, it appears that spinal and corticospinal excitability are reduced during lengthening compared with shortening and isometric contractions. Nonetheless, the modulation observed during lengthening contractions is mainly attributable to inhibition at the spinal level.
منابع مشابه
Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions.
Neural control of muscle contraction seems to be unique during muscle lengthening. The present study aimed to determine the specific sites of modulatory control for lengthening compared with isometric contractions. We used stimulation of the motor cortex and corticospinal tract to observe changes at the spinal and cortical levels. Motor-evoked potentials (MEPs) and cervicomedullary MEPs (CMEPs)...
متن کاملIa-afferent input to motoneurons during shortening and lengthening muscle contractions in humans.
The central nervous system employs different strategies to execute specific motor tasks. Because afferent feedback during shortening and lengthening muscle contractions differs, the neural strategy underlying these tasks may be quite distinct. Cortical drive may be adjusted or afferent input regulated. The exact mechanisms are not clear. Here, we examine the control of synaptic transmission acr...
متن کاملCortical and Spinal Excitability during and after Lengthening Contractions of the Human Plantar Flexor Muscles Performed with Maximal Voluntary Effort
This study was designed to investigate the sites of potential specific modulations in the neural control of lengthening and subsequent isometric maximal voluntary contractions (MVCs) versus purely isometric MVCs of the plantar flexor muscles, when there is enhanced torque during and following stretch. Ankle joint torque during maximum voluntary plantar flexion was measured by a dynamometer when...
متن کاملLengthening contractions are not required to induce protection from contraction-induced muscle injury.
We tested the hypothesis that lengthening contractions and subsequent muscle fiber degeneration and/or regeneration are required to induce exercise-associated protection from lengthening contraction-induced muscle injury. Extensor digitorum longus muscles in anesthetized mice were exposed in situ to repeated lengthening contractions, isometric contractions, or passive stretches. Three days afte...
متن کاملMuscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions.
We tested the hypotheses that lengthening contractions, isometric contractions, and passive stretches increase muscle inflammatory cells (neutrophils and macrophages) and that prior conditioning with lengthening contractions, isometric contractions, or passive stretches reduces neutrophils and macrophages after subsequent lengthening contractions. Extensor digitorum longus muscles in anesthetiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 219 Pt 2 شماره
صفحات -
تاریخ انتشار 2016