Inductive Logic Programming for Data Mining in Economics
نویسندگان
چکیده
This paper addresses the problem of data mining in Inductive Logic Programming (ILP) motivated by its application in the domain of economics. ILP systems have been largely applied to data mining classification tasks with a considerable success. The use of ILP systems in regression tasks has been far less successful. Current systems have very limited numerical reasoning capabilities, which limits the application of ILP to discovery of functional relationships of numeric nature. This paper proposes improvements in numerical reasoning capabilities of ILP systems for dealing with regression tasks. It proposes the use of statistical-based techniques like Model Validation and Model Selection to improve noise handling and it introduces a new search stopping criterium inspired in the PAC learning framework. We have found these extensions essential to improve on results over machine learning and statistical-based algorithms used in the empirical evaluation study.
منابع مشابه
IndLog - Induction in Logic
IndLog is a general purpose Prolog-based Inductive Logic Programming (ILP) system. It is theoretically based on the Mode Directed Inverse Entailment and has several distinguishing features that makes it adequate for a wide range of applications. To search efficiently through large hypothesis spaces, IndLog uses original features like lazy evaluation of examples and Language Level Search. IndLog...
متن کاملAn Inductive Logic Programming Query Language for Database Mining
First, a short introduction to inductive logic programming and machine learning is presented and then an inductive database mining query language RDM (Relational Database Mining language). RDM integrates concepts from inductive logic programming, constraint logic programming, deductive databases and meta-programming into a flexible environment for relational knowledge discovery in databases. Th...
متن کاملParallel Inductive Logic for Data Mining
Data mining is the process of automatic extraction of novel, useful and understandable patterns in very large databases. High-performance, scalable, and parallel computing algorithms are crucial in data mining as datasets grow in size and complexity. Inductive logic is a research area in the intersection of machine learning and logic programming, which has been recently applied to data mining. ...
متن کاملLogical Languages for Data Mining
Data mining focuses on the development of methods and algorithms for such tasks as classification, clustering, rule induction, and discovery of associations. In the database field, the view of data mining as advanced querying has recently stimulated much research into the development of data mining query languages. In the field of machine learning, inductive logic programming has broadened its ...
متن کاملDatabase Mining through Inductive Logic Programming
Rapid growth in the automation of business transactions has lead to an explosion in the size of databases. It has been realised for a long time that the data in these databases contains hidden information which needs to be extracted. Data mining is a step in this direction and aims to find potentially useful and non-trivial information from these databases in the form of patterns. As the size a...
متن کامل