Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls.

نویسندگان

  • Michaela Klinghammer
  • Raimund Tenhaken
چکیده

Arabidopsis cell walls contain large amounts of pectins and hemicelluloses, which are predominantly synthesized via the common precursor UDP-glucuronic acid. The major enzyme for the formation of this nucleotide-sugar is UDP-glucose dehydrogenase, catalysing the irreversible oxidation of UDP-glucose into UDP-glucuronic acid. Four functional gene family members and one pseudogene are present in the Arabidopsis genome, and they show distinct tissue-specific expression patterns during plant development. The analyses of reporter gene lines indicate gene expression of UDP-glucose dehydrogenases in growing tissues. The biochemical characterization of the different isoforms shows equal affinities for the cofactor NAD(+) ( approximately 40 microM) but variable affinities for the substrate UDP-glucose (120-335 microM) and different catalytic constants, suggesting a regulatory role for the different isoforms in carbon partitioning between cell wall formation and sucrose synthesis as the second major UDP-glucose-consuming pathway. UDP-glucose dehydrogenase is feedback inhibited by UDP-xylose. The relatively (compared with a soybean UDP-glucose dehydrogenase) low affinity of the enzymes for the substrate UDP-glucose is paralleled by the weak inhibition of the enzymes by UDP-xylose. The four Arabidopsis UDP-glucose dehydrogenase isoforms oxidize only UDP-glucose as a substrate. Nucleotide-sugars, which are converted by similar enzymes in bacteria, are not accepted as substrates for the Arabidopsis enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The interconversion of UDP-arabinopyranose and UDP-arabinofuranose is indispensable for plant development in Arabidopsis.

L-Ara, an important constituent of plant cell walls, is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. Nucleotide sugar mutases have been demonstrated to interconvert UDP-Larabinopyranose (UDP-Arap) and UDP-L-arabinofuranose (UDP-Araf) in rice (Oryza sativa). These enzymes belong to a small gene family encoding the previously named Reversibly...

متن کامل

Growth, cell walls, and UDP-Glc dehydrogenase activity of Arabidopsis thaliana grown in elevated carbon dioxide1

The impact of elevated CO2 (1000μmol/mol) was assessed on the common weed, Arabidopsis thaliana (Landsberg erecta), which is used as a model plant system. Elevated CO2 stimulated relative growth rate (RGR) and leaf area gain of Arabidopsis beginning from the cotyledon stage and continuing through the juvenile stage. This early advantage in growth enabled the plants grown in elevated CO2 to gain...

متن کامل

Cloning of an enzyme that synthesizes a key nucleotide-sugar precursor of hemicellulose biosynthesis from soybean: UDP-glucose dehydrogenase.

Hemicellulose is a major component of primary plant cell walls. Many of the glycosyl residues found in hemicellulose are derived from the sugar precursor UDP-glucuronic acid, which can be converted into UDP-arabinose, UDP-apiose, UDP-galacturonic acid, and UDP-xylose. The enzyme controlling the biosynthesis of UDP-glucuronic acid, UDP-glucose dehydrogenase (EC 1.1.1.22), was cloned from soybean...

متن کامل

Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems.

The primary cell-wall matrix of most higher plants is composed of large amounts of uronic acids, primarily D-galacturonic acid residues in the backbone of pectic polysaccharides. Uridine diphosphate (UDP)-glucose dehydrogenase is a key enzyme in the biosynthesis of uronic acids. We produced transgenic alfalfa (Medicago sativa) plants expressing a soybean UDP-glucose dehydrogenase cDNA under the...

متن کامل

Galactose Biosynthesis in Arabidopsis Genetic Evidence for Substrate Channeling from UDP-D-Galactose into Cell Wall Polymers

The biosynthesis of plant cell wall polysaccharides requires the concerted action of nucleotide sugar interconversion enzymes, nucleotide sugar transporters, and glycosyl transferases. How cell wall synthesis in planta is regulated, however, remains unclear. The root epidermal bulger 1 (reb1) mutant in Arabidopsis thaliana is partially deficient in cell wall arabinogalactan-protein (AGP), indic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 58 13  شماره 

صفحات  -

تاریخ انتشار 2007