Self-intersecting Geodesics and Entropy of the Geodesic Flow

نویسندگان

  • Sigurd Angenent
  • SIGURD ANGENENT
چکیده

Our main observation concerns closed geodesics on surfaces M with a smooth Finsler metric, i.e. a function F : TM → [0,∞) which is a norm on each tangent space TpM , p ∈ M , which is smooth outside of the zero section in TM , and which is strictly convex in the sense that Hess(F ) is positive definite on TpM \ {0}. One calls a Finsler metric F symmetric if F (p,−v) = F (p, v) for all v ∈ TpM . We denote the universal cover of a surface M by M̂ . Any Finsler metric on M lifts to a Finsler metric on M̂ which we again denote by F

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics of Weil-Petersson geodesics II: bounded geometry and unbounded entropy

We use ending laminations for Weil-Petersson geodesics to establish that bounded geometry is equivalent to bounded combinatorics for WeilPetersson geodesic segments, rays, and lines. Further, a more general notion of non-annular bounded combinatorics, which allows arbitrarily large Dehn-twisting, corresponds to an equivalent condition for Weil-Petersson geodesics. As an application, we show the...

متن کامل

Numerical Treatment of Geodesic Differential Equations on Two Dimensional Surfaces

This paper presents a brief instructions to nd geodesics equa-tions on two dimensional surfaces in R3. The resulting geodesic equations are solved numerically using Computer Program Matlab, the geodesics are dis-played through Figures.

متن کامل

Growth of the Number of Geodesics between Points and Insecurity for Riemannian Manifolds

A Riemannian manifold is said to be uniformly secure if there is a finite number s such that all geodesics connecting an arbitrary pair of points in the manifold can be blocked by s point obstacles. We prove that the number of geodesics with length ≤ T between every pair of points in a uniformly secure manifold grows polynomially as T → ∞. By results of Gromov and Mañé, the fundamental group of...

متن کامل

C∞ Genericity of Positive Topological Entropy for Geodesic Flows on S

We show that there is a C∞ open and dense set of positively curved metrics on S2 whose geodesic flow has positive topological entropy, and thus exhibits chaotic behavior. The geodesic flow for each of these metrics possesses a horseshoe and it follows that these metrics have an exponential growth rate of hyperbolic closed geodesics. The positive curvature hypothesis is required to ensure the ex...

متن کامل

Parametrizing Simple Closed Geodesy on Γ\h

We exhibit a canonical geometric pairing of the simple closed curves of the degree three cover of the modular surface, Γ\H , with the proper single self-intersecting geodesics of Crisp and Moran. This leads to a pairing of fundamental domains for Γ with Markoff triples. The routes of the simple closed geodesics are directly related to the above. We give two parametrizations of these. Combining ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006