JKR solution for an anisotropic half space

نویسنده

  • J. R. Barber
چکیده

In this paper, the classical JKR theory of the adhesive contact of isotropic elastic spheres is extended to consider the effect of anisotropic elasticity. The contact area will then generally be non-circular, but in many cases it can reasonably be approximated by an ellipse whose dimensions are determined by imposing the energy release rate criterion at the ends of the major and minor axes. Analytical expressions are obtained for the relations between the contact force, the normal displacement and the ellipse semi-axes. It is found that the eccentricity of the contact area decreases during tensile loading and for cases when the point load solution can be accurately described by only one Fourier term, it is almost circular at pull-off, permitting an exact closed form solution for this case. As in the isotropic JKR solution, the pull-off force is independent of the mean elastic modulus, but we find that anisotropy increases the pull-off force and this effect can be quite significant. & 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsional Surface Wave Propagation in Anisotropic Layer Sandwiched Between Heterogeneous Half-Space

The present paper studies the possibility of propagation of torsional surface waves in an inhomogeneous anisotropic layer lying between two heterogeneous half-spaces (upper and lower half-space). Both the half-spaces are assumed to be under compressive initial stress. The study reveals that under the assumed conditions, a torsional surface wave propagates in the medium. The dispersion relation ...

متن کامل

Effect of Initial Stress on Propagation of Love Waves in an Anisotropic Porous Layer

In the present paper, effect of initial stresses on the propagation of Love waves has been investigated in a fluid saturated, anisotropic, porous layer lying in welded contact over a prestressed, non-homogeneous elastic half space. The dispersion equation of phase velocity has been derived. It has been found that the phase velocity of Love waves is considerably influenced by porosity and anisot...

متن کامل

General solution to two-dimensional nonslipping JKR model with a pulling force in an arbitrary direction.

In this paper, a generalized JKR model is investigated, in which an elastic cylinder adhesively contacts with an elastic half space and the contact region is assumed to be perfect bonding. An external pulling force is acted on the cylinder in an arbitrary direction. The contact area changes during the pull-off process, which can be predicted using the dynamic Griffith energy balance criterion a...

متن کامل

Dispersion of Torsional Surface Wave in a Pre-Stressed Heterogeneous Layer Sandwiched Between Anisotropic Porous Half-Spaces Under Gravity

The study of surface waves in a layered media has their viable application in geophysical prospecting. This paper presents an analytical study on the dispersion of torsional surface wave in a pre-stressed heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite medium and gravitating anisotropic porous half-space. The non-homogeneity within the intermediate layer a...

متن کامل

Analytical Solution for a Two-Layer Transversely Isotropic Half-Space Affected by an Arbitrary Shape Dynamic Surface Load

The dynamic response of a transversely isotropic, linearly elastic layer bonded to the surface of a half-space of a different transversely isotropic material under arbitrary shape surface loads is considered. With the help of displacements and stresses Green’s functions, an analytical formulation is presented for the determination of the displacements and stresses at any point in both surface l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014