Hierarchies of Piecewise Testable Languages

نویسندگان

  • Ondrej Klíma
  • Libor Polák
چکیده

The classes of languages which are boolean combinations of languages of the form Aa1A a2A ∗ . . . Aa`A , where a1, . . . , a` ∈ A, ` ≤ k , for a fixed k ≥ 0, form a natural hierarchy within piecewise testable languages and have been studied in papers by Simon, Blanchet-Sadri, Volkov and others. The main issues were the existence of finite bases of identities for the corresponding pseudovarieties of monoids and generating monoids for these pseudovarieties. Here we deal with similar questions concerning the finite unions and positive boolean combinations of the languages of the form above. In the first case the corresponding pseudovarieties are given by a single identity, in the second case there are finite bases for k equal to 1 and 2 and there is no finite basis for k ≥ 4 (the case k = 3 remains open). All the pseudovarieties are generated by a single algebraic structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separability by piecewise testable languages is PTime-complete

Piecewise testable languages form the first level of the Straubing-Thérien hierarchy. The membership problem for this level is decidable and testing if the language of a DFA is piecewise testable is NL-complete. The question has not yet been addressed for NFAs. We fill in this gap by showing that it is PSpace-complete. The main result is then the lower-bound complexity of separability of regula...

متن کامل

Piecewise Testable Languages and Nondeterministic Automata

A regular language is k-piecewise testable if it is a finite boolean combination of languages of the form Σa1Σ · · ·ΣanΣ, where ai ∈ Σ and 0 ≤ n ≤ k. Given a DFA A and k ≥ 0, it is an NLcomplete problem to decide whether the language L(A) is piecewise testable and, for k ≥ 4, it is coNP-complete to decide whether the language L(A) is k-piecewise testable. It is known that the depth of the minim...

متن کامل

Deciding Piecewise Testable Separability for Regular Tree Languages

The piecewise testable separability problem asks, given two input languages, whether there exists a piecewise testable language that contains the first input language and is disjoint from the second. We prove a general characterisation of piecewise testable separability on languages in a well-quasiorder, in terms of ideals of the ordering. This subsumes the known characterisations in the case o...

متن کامل

Piecewise testable languages via combinatorics on words

A regular language L over an alphabet A is called piecewise testable if it is a finite boolean combination of languages of the form Aa1A a2A ∗ . . . Aa`A ∗, where a1, . . . , a` ∈ A, ` ≥ 0. An effective characterization of piecewise testable languages was given in 1972 by Simon who proved that a language L is piecewise testable if and only if its syntactic monoid is J -trivial. Nowadays there e...

متن کامل

On Piecewise Testable, Starfree, and Recognizable Picture Languages

We isolate a technique for showing that a picture language (i.e. a \two-dimensional language") is not recognizable. Then we prove the non-recognizability of a picture language that is both starfree (i.e., deenable by means of union, concatenation, and complement) and piece-wise testable (i.e., deenable by means of allowed subpictures), solving an open question in GR96]. We also deene local, loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Found. Comput. Sci.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2008