The discrete fractional cosine and sine transforms

نویسندگان

  • Soo-Chang Pei
  • Min-Hung Yeh
چکیده

This paper is concerned with the definitions of the discrete fractional cosine transform (DFRCT) and the discrete fractional sine transform (DFRST). The definitions of DFRCT and DFRST are based on the eigen decomposition of DCT and DST kernels. This is the same idea as that of the discrete fractional Fourier transform (DFRFT); the eigenvalue and eigenvector relationships between the DFRCT, DFRST, and DFRFT can be established. The computations of DFRFT for even or odd signals can be planted into the half-size DFRCT and DFRST calculations. This will reduce the computational load of the DFRFT by about one half.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The discrete fractional random cosine and sine transforms

Based on the discrete fractional random transform (DFRNT), we present the discrete fractional random cosine and sine transforms (DFRNCT and DFRNST). We demonstrate that the DFRNCT and DFRNST can be regarded as special kinds of DFRNT and thus their mathematical properties are inherited from the DFRNT. Numeral results of DFRNCT and DFRNST for one and two dimensional functions have been given.

متن کامل

Modified Sine-Cosine Algorithm for Sizing Optimization of Truss Structures with Discrete Design Variables

This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing optimization of truss structures. The original sine cosine algorithm (SCA) is a population-based metaheuristic that fluctuates the search agents about the best solution based on sine and cosine functions. The efficiency of the original SCA in solving standard optimization problems of well-known mathematical function...

متن کامل

Fractional cosine, sine, and Hartley transforms

In previous papers, the Fourier transform (FT) has been generalized into the fractional Fourier transform (FRFT), the linear canonical transform (LCT), and the simplified fractional Fourier transform (SFRFT). Because the cosine, sine, and Hartley transforms are very similar to the FT, it is reasonable to think they can also be generalized by the similar way. In this paper, we will introduce sev...

متن کامل

Fractional Cosine and Sine Transforms

The fractional cosine and sine transforms – closely related to the fractional Fourier transform, which is now actively used in optics and signal processing – are introduced and their main properties and possible applications are discussed.

متن کامل

Fractional cosine and sine transforms in relation to the fractional Fourier and Hartley transforms

The fractional cosine and sine transforms – closely related to the fractional Fourier transform, which is now actively used in optics and signal processing, and to the fractional Hartley transform – are introduced and their main properties and possible applications as elementary fractional transforms of causal signals are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2001