People Tracking and Segmentation Using Efficient Shape Sequences Matching
نویسندگان
چکیده
We design an effective shape prior embedded human silhouettes extraction algorithm. Human silhouette extraction is found challenging because of articulated structures, pose variations, and background clutters. Many segmentation algorithms, including the Min-Cut algorithm, meet difficulties in human silhouette extraction. We aim at improving the performance of the Min-Cut algorithm by embedding shape prior knowledge. Unfortunately, seeking shape priors automatically is not trivial especially for human silhouettes. In this work, we present a shape sequence matching method that searches for the best path in spatial-temporal domain. The path contains shape priors of human silhouettes that can improve the segmentation. Matching shape sequences in spatial-temporal domain is advantageous over finding shape priors by matching shape templates with a single likelihood frame because errors can be avoided by searching for the global optimization in the domain. However, the matching in spatial-temporal domain is computationally intensive, which makes many shape matching methods impractical. We propose a novel shape matching approach that has low computational complexity independent of the number of shape templates. In addition, we investigate on how to make use of shape priors in a more adequate way. Embedding shape priors into the Min-Cut algorithm based on distances from shape templates is lacking because Euclidean distances cannot represent shape knowledge in a fully appropriate way. We embed distance and orientation information of shape priors simultaneously into the MinCut algorithm. Experimental results demonstrate that our algorithm is efficient and practical. Compared with previous works, our silhouettes extraction system produces better segmentation results.
منابع مشابه
Co-operative Multi-target Tracking and Classification
This paper describes a real-time system for multi-target tracking and classification in image sequences from a single stationary camera. Several targets can be tracked simultaneously in spite of splits and merges amongst the foreground objects and presence of clutter in the segmentation results. In results we show tracking of upto 17 targets simultaneously. The algorithm combines Kalman filter-...
متن کاملLocal Signal Models for Image Sequence Analysis
The thesis describes novel methods for image motion computation and template matching. A multiscale algorithm for energy-based estimation and representation of local spatiotemporal structure by second order symmetric tensors is presented. An efficient spatiotemporal implementation of a signal modelling method called normalized convolution is described. This provides a means to handle signals wi...
متن کاملComputation Optical Flow Using Pipeline Architecture
Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...
متن کاملSegmentation and tracking of multiple moving objects for intelligent video analysis
This paper aims to address two of the key research issues in computer vision — the detection and tracking of multiple objects in the cluttered dynamic scene — that underpin the intelligence aspects of advanced visual surveillance systems aiming at automated visual events detection and behaviour analysis. We discuss two major contributions in resolving these problems within a systematic framewor...
متن کاملDetection andmatching of multiple occludedmoving people for human tracking in colour video sequences
The proposed approach aims to track multiple moving people in a colour video acquired with a single camera. The first phase of the approach consists in precisely detecting multi-human inside moving foregrounds. The input to this phase is foreground pixels which were extracted from the scene using any background subtraction technique. These moving foregrounds are then further segmented into mult...
متن کامل