Aggregation and Constraint Processing in Lifted Probabilistic Infrence

نویسنده

  • Jacek Jerzy Kisyński
چکیده

Representations that mix graphical models and first-order logic—called either firstorder or relational probabilistic models—were proposed nearly twenty years ago and many more have since emerged. In these models, random variables are parameterized by logical variables. One way to perform inference in first-order models is to propositionalize the model, that is, to explicitly consider every element from the domains of logical variables. This approach might be intractable even for simple first-order models. The idea behind lifted inference is to carry out as much inference as possible without propositionalizing. An exact lifted inference procedure for first-order probabilistic models was developed by Poole [2003] and later extended to a broader range of problems by de Salvo Braz et al. [2007]. The C-FOVE algorithm by Milch et al. [2008] expanded the scope of lifted inference and is currently the state of the art in exact lifted inference. In this thesis we address two problems related to lifted inference: aggregation in directed first-order probabilistic models and constraint processing during lifted inference. Recent work on exact lifted inference focused on undirected models. Directed first-order probabilistic models require an aggregation operator when a parent random variable is parameterized by logical variables that are not present in a child random variable. We introduce a new data structure, aggregation parfactors, to describe aggregation in directed first-order models. We show how to extend the C-FOVE algorithm to perform lifted inference in the presence of aggregation parfactors. There are cases where the polynomial time complexity (in the domain size

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraint Processing in Lifted Probabilistic Inference

First-order probabilistic models combine representational power of first-order logic with graphical models. There is an ongoing effort to design lifted inference algorithms for first-order probabilistic models. We analyze lifted inference from the perspective of constraint processing and, through this viewpoint, we analyze and compare existing approaches and expose their advantages and limitati...

متن کامل

Lifted Aggregation in Directed First-Order Probabilistic Models

As exact inference for first-order probabilistic graphical models at the propositional level can be formidably expensive, there is an ongoing effort to design efficient lifted inference algorithms for such models. This paper discusses directed first-order models that require an aggregation operator when a parent random variable is parameterized by logical variables that are not present in a chi...

متن کامل

Lifted Variable Elimination: Decoupling the Operators from the Constraint Language

Lifted probabilistic inference algorithms exploit regularities in the structure of graphical models to perform inference more efficiently. More specifically, they identify groups of interchangeable variables and perform inference once per group, as opposed to once per variable. The groups are defined by means of constraints, so the flexibility of the grouping is determined by the expressivity o...

متن کامل

The Nemhauser-Trotter Reduction and Lifted Message Passing for the Weighted CSP

We study two important implications of the constraint composite graph (CCG) associated with the weighted constraint satisfaction problem (WCSP). First, we show that the Nemhauser-Trotter (NT) reduction popularly used for kernelization of the minimum weighted vertex cover (MWVC) problem can also be applied to the CCG of the WCSP. This leads to a polynomial-time preprocessing algorithm that fixes...

متن کامل

Lifted Variable Elimination with Arbitrary Constraints

Lifted probabilistic inference algorithms exploit regularities in the structure of graphical models to perform inference more efficiently. More specifically, they identify groups of interchangeable variables and perform inference once for each group, as opposed to once for each variable. The groups are defined by means of constraints, so the flexibility of the grouping is determined by the expr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010