Galois Theory
نویسنده
چکیده
Remark 0.1 (Notation). |G| denotes the order of a finite group G. [E : F ] denotes the degree of a field extension E/F. We write H ≤ G to mean that H is a subgroup of G, and N G to mean that N is a normal subgroup of G. If E/F and K/F are two field extensions, then when we say that K/F is contained in E/F , we mean via a homomorphism that fixes F. We assume the following basic facts in this set of notes, in addition to elementary number theory, group and ring theory, and linear algebra: Fact 0.2. If F is a field, then F [x] is a PID, so all nonzero prime ideals are maximal and are generated by a single irreducible polynomial. This irreducible polynomial is the polynomial of lowest positive degree in the ideal and is unique modulo units.
منابع مشابه
A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملDeformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملDeformation of Outer Representations of Galois Group II
This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...
متن کاملArithmetic Teichmuller Theory
By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...
متن کاملGalois corings from the descent theory point of view
We introduce Galois corings, and give a survey of properties that have been obtained so far. The Definition is motivated using descent theory, and we show that classical Galois theory, Hopf-Galois theory and coalgebra Galois theory can be obtained as a special case.
متن کاملRudimentary Galois Theory
This paper introduces basic Galois Theory, primarily over fields with characteristic 0, beginning with polynomials and fields and ultimately relating the two with the Fundamental Theorem of Galois Theory. This paper then applies Galois Theory to prove Galois’s Theorem, describing the relationship between the Galois groups of polynomials and their solvability by radicals.
متن کامل