Toward parts-based scene understanding with pixel-support parts-sparse pictorial structures
نویسنده
چکیده
Scene understanding remains a significant challenge in the computer vision community. The visual psychophysics literature has demonstrated the importance of interdependence among parts of the scene. Yet, the majority of methods in computer vision remain local. Pictorial structures have arisen as a fundamental parts-based model for some vision problems, such as articulated object detection. However, the form of classical pictorial structures limits their applicability for global problems, such as semantic pixel labeling. In this paper, we propose an extension of the pictorial structures approach, called pixel-support parts-sparse pictorial structures, or PS3, to overcome this limitation. Our model extends the classical form in two ways: first, it defines parts directly based on pixel-support rather than in a parametric form, and second, it specifies a space of plausible parts-based scene models and permits one to be used for inference on any given image. PS3 makes strides toward unifying object-level and pixel-level modeling of scene elements. In this report, we implement the first half of our model and rely upon external knowledge to provide an initial graph structure for a given image. Our experimental results on benchmark datasets demonstrate the capability of this new parts-based view of scene modeling.
منابع مشابه
Custom Pictorial Structures for Re-identification
We propose a novel methodology for re-identification, based on Pictorial Structures (PS). Whenever face or other biometric information is missing, humans recognize an individual by selectively focusing on the body parts, looking for part-to-part correspondences. We want to take inspiration from this strategy in a re-identification context, using PS to achieve this objective. For single image re...
متن کاملNested Pictorial Structures
We propose a theoretical construct coined nested pictorial structure to represent an object by parts that are recursively nested. Three innovative ideas are proposed: First, the nested pictorial structure finds a part configuration that is allowed to be deformed in geometric arrangement, while being confined to be topologically nested. Second, we define nested features which lend themselves to ...
متن کاملPart-based motion descriptor image for human action recognition
This paper presents a novel and efficient framework for human action recognition based on modeling the motion of human body-parts. Intuitively, a collective understanding of human body-part movements can lead to better understanding and representation of any human action. In this paper, we propose a generative representation of the motion of human body-parts to learn and classify human actions....
متن کاملLearning a Representative and Discriminative Part Model with Deep Convolutional Features for Scene Recognition
The discovery of key and distinctive parts is critical for scene parsing and understanding. However, it is a challenging problem due to the weakly supervised condition, i.e., no annotation for parts is available. To address above issues, we propose a unified framework for learning a representative and discriminative part model with deep convolutional features. Firstly, we employ selective searc...
متن کاملOn Support Relations and Semantic Scene Graphs
Rapid development of robots and autonomous vehicles requires semantic information about the surrounding scene to decide upon the correct action or to be able to complete particular tasks. Scene understanding provides the necessary semantic interpretation by semantic scene graphs. For this task, so-called support relationships which describe the contextual relations between parts of the scene su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 34 شماره
صفحات -
تاریخ انتشار 2013