Sipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development.

نویسندگان

  • Kathrin Landgraf
  • Frank Bollig
  • Mark-Oliver Trowe
  • Birgit Besenbeck
  • Christina Ebert
  • Dagmar Kruspe
  • Andreas Kispert
  • Frank Hänel
  • Christoph Englert
چکیده

The eyes absent 1 protein (Eya1) plays an essential role in the development of various organs in both invertebrates and vertebrates. Mutations in the human EYA1 gene are linked to BOR (branchio-oto-renal) syndrome, characterized by kidney defects, hearing loss, and branchial arch anomalies. For a better understanding of Eya1's function, we have set out to identify new Eya1-interacting proteins. Here we report the identification of the related proteins Sipl1 (Shank-interacting protein-like 1) and Rbck1 (RBCC protein interacting with PKC1) as novel interaction partners of Eya1. We confirmed the interactions by glutathione S-transferase (GST) pulldown analysis and coimmunoprecipitation. A first mechanistic insight is provided by the demonstration that Sipl1 and Rbck1 enhance the function of Eya proteins to act as coactivators for the Six transcription factors. Using reverse transcriptase PCR (RT-PCR) and in situ hybridization, we show that Sipl1 and Rbck1 are coexpressed with Eya1 in several organs during embryogenesis of both the mouse and zebrafish. By morpholino-mediated knockdown, we demonstrate that the Sipl1 and Rbck1 orthologs are involved in different aspects of zebrafish development. In particular, knockdown of one Sipl1 ortholog as well as one Rbck1 ortholog led to a BOR syndrome-like phenotype, with characteristic defects in ear and branchial arch formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis

Craniofacial morphogenesis requires proper development of pharyngeal arches and epibranchial placodes. We show that the epibranchial placodes, in addition to giving rise to cranial sensory neurons, generate a novel lineage-related non-neuronal cell population for mouse pharyngeal arch development. Eya1 is essential for the development of epibranchial placodes and proximal pharyngeal arches. We ...

متن کامل

A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis.

Shared molecular programs govern the formation of heart and head during mammalian embryogenesis. Development of both structures is disrupted in human chromosomal microdeletion of 22q11.2 (del22q11), which causes DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS). Here, we have identified a genetic pathway involving the Six1/Eya1 transcription complex that regulates cardiovascular an...

متن کامل

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

The first case of NSHL by direct impression on EYA1 gene and identification of one novel mutation in MYO7A in the Iranian families

Objective(s): Targeted next-generation sequencing (NGS) provides a consequential opportunity to elucidate genetic factors in known diseases, particularly in profoundly heterogeneous disorders such as non-syndromic hearing loss (NSHL). Hearing impairments could be classified into syndromic and non-syndromic types. This study intended to assess the significance of mutations in these genes to the ...

متن کامل

O-5: Identification of Novel ImmunodominantEpididymal Sperm Proteins Using CombinatorialApproach

Background: Alteration in the protein signatures of functionally immature testicular spermatozoa occurs during their journey through the epididymis. This leads to acquisition of sperm domain specific functions essential for successful fertilization. Epididymal sperm proteins are preferred targets for immunocontraception as well as in elucidating the causes of infertility. The Background of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 30 24  شماره 

صفحات  -

تاریخ انتشار 2010