Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases.

نویسندگان

  • Christopher Power
  • Scot Henry
  • Marc R Del Bigio
  • Peter H Larsen
  • Dale Corbett
  • Yumi Imai
  • Voon Wee Yong
  • James Peeling
چکیده

Intracerebral hemorrhage (ICH) is characterized by parenchymal hematoma formation with surrounding inflammation. Matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of neurological diseases defined by inflammation and cell death. To investigate the expression profile and pathogenic aspects of MMPs in ICH, we examined MMP expression in vivo using a collagenase-induced rat model of ICH. ICH increased brain MMP-2, -3, -7, and -9 mRNA levels relative to sham-injected (control) animals in the vicinity of the hematoma, but MMP-12 (macrophage metalloelastase) was the most highly induced MMP (>80-fold). Immunohistochemistry showed MMP-12 to be localized in activated monocytoid cells surrounding the hematoma. In vitro studies showed that thrombin, released during ICH, induced MMP-12 expression in monocytoid cells, which was reduced by minocycline application. Similarly, in vivo minocycline treatment significantly reduced MMP-12 levels in brain. Neuropathological studies disclosed marked glial activation and apoptosis after ICH that was reduced by minocycline treatment. Neurobehavioral outcomes also were improved with minocycline treatment compared with untreated ICH controls. Thus, select MMPs exhibit increased expression after ICH, whereas minocycline is neuroprotective after ICH by suppressing monocytoid cell activation and downregulating MMP-12 expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative importance of proteinase-activated receptor-1 versus matrix metalloproteinases in intracerebral hemorrhage-mediated neurotoxicity in mice.

BACKGROUND AND PURPOSE To reduce bleeding and damage to central nervous system tissue in intracerebral hemorrhage, the coagulant effect of thrombin is essential. However, thrombin itself can kill neurons in intracerebral hemorrhage as can the matrix metalloproteinases (MMPs), which are also elevated in this condition, in part due to thrombin-mediated activation of MMPs. It is thus important to ...

متن کامل

SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage.

BACKGROUND AND PURPOSE The mechanisms by which intracerebral hemorrhages produce changes of blood flow and metabolism, cell death, and behavioral abnormalities are complex. In this study, we begin to test the hypothesis that intracerebral hemorrhage activates Src kinases that phosphorylate other molecules to produce cell injury and behavioral deficits after intracerebral hemorrhage (ICH). MET...

متن کامل

Hemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells

Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...

متن کامل

Donor spontaneous intracerebral hemorrhage is associated with systemic activation of matrix metalloproteinase-2 and matrix metalloproteinase-9 and subsequent development of coronary vasculopathy in the heart transplant recipient.

BACKGROUND Matrix metalloproteinase (MMP)-2 and MMP-9 have been shown to play a role in the progression of hemorrhagic stroke. We hypothesized that donor intracerebral hemorrhage (ICH) is associated with activation of the metalloproteinases before transplantation that play a key role in the subsequent development of transplant vasculopathy. METHODS AND RESULTS We evaluated mRNA expressions of...

متن کامل

Interleukin-4 Ameliorates the Functional Recovery of Intracerebral Hemorrhage Through the Alternative Activation of Microglia/Macrophage

Neuro-inflammation plays an important role in the recovery of brain injury after stroke. Microglia/macrophage is the major executor in the neuro-inflammation, which can be polarized into two distinct phenotypes: injurious/toxic classical activation (M1 phenotype) and protective alternative activation (M2 phenotype). Here, we investigated whether intracerebral administration of interleukin-4 (IL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of neurology

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2003