Collagories for Relational Adhesive Rewriting

نویسنده

  • Wolfram Kahl
چکیده

We define collagories essentially as “distributive allegories without zero morphisms”, and show that they are sufficient for accommodating the relation-algebraic approach to graph transformation. Collagories closely correspond to the adhesive categories important for the categorical DPO approach to graph transformation. but thanks to their relation-algebraic flavour provide a more accessible and more flexible setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-tabulations, Bicolimits and Van-Kampen Squares in Collagories

We previously defined collagories essentially as “distributive allegories without zero morphisms”. Collagories are sufficient for accommodating the relation-algebraic approach to graph transformation, and closely correspond to the adhesive categories important for the categorical DPO approach to graph transformation. Heindel and Sobociński have recently characterised the Van-Kampen colimits use...

متن کامل

Adhesive Categories

We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to rewriting on arbitrary adhesive categories.

متن کامل

Adhesive and quasiadhesive categories

We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved, as well as quasiadhesive categories which restrict attention to regular monomorphisms. Many examples of graphical structures used in computer science are shown to be examples of adhesive and quasiadhesive categories. Double-pushout graph rewriting generalizes well t...

متن کامل

Processes for Adhesive Rewriting Systems

Rewriting systems over adhesive categories have been recently introduced as a general framework which encompasses several rewriting-based computational formalisms, including various modelling frameworks for concurrent and distributed systems. Here we begin the development of a truly concurrent semantics for adhesive rewriting systems by defining the fundamental notion of process, well-known fro...

متن کامل

Adhesivity Is Not Enough: Local Church-Rosser Revisited

Adhesive categories provide an abstract setting for the doublepushout approach to rewriting, generalising classical approaches to graph transformation. Fundamental results about parallelism and confluence, including the local Church-Rosser theorem, can be proven in adhesive categories, provided that one restricts to linear rules. We identify a class of categories, including most adhesive catego...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009