Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity.
نویسندگان
چکیده
Among the "beyond Li-ion" battery chemistries, nonaqueous Li-O2 batteries have the highest theoretical specific energy and, as a result, have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O2 batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than fourfold) in Li-O2 cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using (7)Li NMR and modeling, we confirm that this improvement is a result of enhanced Li(+) stability in solution, which, in turn, induces solubility of the intermediate to Li2O2 formation. Using this strategy, the challenging task of identifying an electrolyte solvent that possesses the anticorrelated properties of high intermediate solubility and solvent stability is alleviated, potentially providing a pathway to develop an electrolyte that affords both high capacity and rechargeability. We believe the model and strategy presented here will be generally useful to enhance Coulombic efficiency in many electrochemical systems (e.g., Li-S batteries) where improving intermediate stability in solution could induce desired mechanisms of product formation.
منابع مشابه
Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery.
Liquid-cell in situ transmission electron microscopy (TEM) observations of the charge/discharge reactions of nonaqueous Li-oxygen battery cathode were performed with ∼5 nm spatial resolution. The discharging reaction occurred at the interface between the electrolyte and the reaction product, whereas in charging, the reactant was decomposed at the contact with the gold current collector, indicat...
متن کاملToward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.
Lithium-oxygen chemistry offers the highest energy density for a rechargeable system as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium-dioxygen battery". Consequently, the next step for the lithium-"air" battery is to understand how the reactio...
متن کاملHigh‐Performance Li–O2 Batteries with Controlled Li2O2 Growth in Graphene/Au‐Nanoparticles/Au‐Nanosheets Sandwich
The working of nonaqueous Li-O2 batteries relies on the reversible formation/decomposition of Li2O2 which is electrically insulating and reactive with carbon and electrolyte. Realizing controlled growth of Li2O2 is a prerequisite for high performance of Li-O2 batteries. In this work, a sandwich-structured catalytic cathode is designed: graphene/Au-nanoparticles/Au-nanosheets (G/Au-NP/Au-NS) tha...
متن کاملMechanism of Zn Insertion into Nanostructured δ‐MnO2: A Nonaqueous Rechargeable Zn Metal Battery
Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn ion chemistry...
متن کاملA Polymer Lithium-Oxygen Battery
Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000 mAh gC(-1) reflected in a surface capacity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 30 شماره
صفحات -
تاریخ انتشار 2015