Performance sustaining intracortical neural prostheses.
نویسندگان
چکیده
OBJECTIVE Neural prostheses, or brain-machine interfaces, aim to restore efficient communication and movement ability to those suffering from paralysis. A major challenge these systems face is robust performance, particularly with aging signal sources. The aim in this study was to develop a neural prosthesis that could sustain high performance in spite of signal instability while still minimizing retraining time. APPROACH We trained two rhesus macaques implanted with intracortical microelectrode arrays 1-4 years prior to this study to acquire targets with a neurally-controlled cursor. We measured their performance via achieved bitrate (bits per second, bps). This task was repeated over contiguous days to evaluate the sustained performance across time. MAIN RESULTS We found that in the monkey with a younger (i.e., two year old) implant and better signal quality, a fixed decoder could sustain performance for a month at a rate of 4 bps, the highest achieved communication rate reported to date. This fixed decoder was evaluated across 22 months and experienced a performance decline at a rate of 0.24 bps yr(-1). In the monkey with the older (i.e., 3.5 year old) implant and poorer signal quality, a fixed decoder could not sustain performance for more than a few days. Nevertheless, performance in this monkey was maintained for two weeks without requiring additional online retraining time by utilizing prior days' experimental data. Upon analysis of the changes in channel tuning, we found that this stability appeared partially attributable to the cancelling-out of neural tuning fluctuations when projected to two-dimensional cursor movements. SIGNIFICANCE The findings in this study (1) document the highest-performing communication neural prosthesis in monkeys, (2) confirm and extend prior reports of the stability of fixed decoders, and (3) demonstrate a protocol for system stability under conditions where fixed decoders would otherwise fail. These improvements to decoder stability are important for minimizing training time and should make neural prostheses more practical to use.
منابع مشابه
Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
OBJECTIVE Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. APPROACH One possible solution is to...
متن کاملNeural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array.
The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably tho...
متن کاملFabrication of 3d Parylene Sheath Probes for Reliable Neuroprosthetic Recordings
3D Parylene sheath probes having Pt electrodes on the outer and inner surfaces of the sheath are introduced as a novel interface for long term intracortical neural recording. Surface micromachined Parylene channels with Pt electrodes are expanded into a 3D sheath structure by thermoforming in the presence of a custom tapered microwire that shapes the sheath. Electrochemical characterization, in...
متن کاملPolymer-Based Approaches to Improve the Long Term Performance of Intracortical Neural Interfaces
This paper describes different polymer-based approaches to improve the long term performance of intracortical neural interfaces. The advantages of these modified interfaces compared to the commonly used interfaces are identified and possible problems which can arise with these modifications are discussed. Furthermore, some new ideas which will be implemented within the framework of the recently...
متن کاملTactile Discrimination Based on Intracortical Microstimulation in Primary Somatosensory Cortex in Sprague-Dawley Rats
Sensory cortical prostheses have the potential to aid people suffering from blindness, deafness or other sensory deficits by applying stimulation directly to the brain. Our main objective was to investigate if rats were able to perform tactile discrimination based on a natural, tactile input or based on artificially generated sensation. Four rats were first trained to touch a spinning wheel and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural engineering
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2014