PMCNS: Using a Progressively Stricter Fitness Criterion to Guide Novelty Search
نویسندگان
چکیده
Novelty search is an evolutionary approach in which the population is driven towards behavioural innovation instead of towards a fixed objective. The use of behavioural novelty to score candidate solutions precludes convergence to local optima. However, in novelty search, significant effort may be spent on exploration of novel, but unfit behaviours. The authors propose progressive minimal criteria novelty search (PMCNS) to overcome this issue. In PMCNS, novelty search can freely explore the behaviour space as long as the solutions meet a progressively stricter fitness criterion. The authors evaluate the performance of our approach by evolving neurocontrollers for swarms of robots in two distinct tasks. Their results show that PMCNS outperforms fitness-based evolution and pure novelty search, and that PMCNS is superior to linear scalarisation of novelty and fitness scores. An analysis of behaviour space exploration shows that the benefits of novelty search are conserved in PMCNS despite the evolutionary pressure towards progressively fitter behaviours. PMCNS: Using a Progressively Stricter Fitness Criterion to Guide Novelty Search
منابع مشابه
Progressive Minimal Criteria Novelty Search
We propose progressive minimal criteria novelty search (PMCNS), which is an extension of minimal criteria novelty search. In PMCNS, we combine the respective benefits of novelty search and fitnessbased evolution by letting novelty search freely explore new regions of behaviour space as long as the solutions meet a progressively stricter fitness criterion. We evaluate the performance of our appr...
متن کاملAbandoning Objectives: Evolution Through the Search for Novelty Alone
In evolutionary computation, the fitness function normally measures progress toward an objective in the search space, effectively acting as an objective function. Through deception, such objective functions may actually prevent the objective from being reached. While methods exist to mitigate deception, they leave the underlying pathology untreated: Objective functions themselves may actively m...
متن کاملHybridization of Evolutionary Algorithms Using Different Evaluation Approaches
Tato práce je zaměřena na výzkum evolučních algoritmů kombinujícíh moderní přístup v evolučním počítání, zvaný novelty search, s klasickým přístupem založeným na optimalizaci fitness. Novelty search je v této práci analyzován spolu s jedním dosavadním přístupem který již novelty search a fitness kombinuje a jsou zmíněny jejich výhody a nevýhody. Na základě této analýzy jsou navrhnuty dva nové h...
متن کاملCombination of Novelty Search and Fitness-Based Search Applied to Robot Body-Brain Co-Evolution
Evolutionary algorithms are a frequently used technique for designing morphology and controller of a robot. However, a significant challenge for evolutionary algorithms is premature convergence to local optima. Recently proposed Novelty Search algorithm introduces a radical idea that premature convergence can be avoided by ignoring the original objective and searching for any novel behaviors in...
متن کاملImproving Grammatical Evolution in Santa Fe Trail using Novelty Search
Grammatical Evolution is an evolutionary algorithm that can evolve complete programs using a Backus Naur form grammar as a plug-in component to describe the output language. An important issue of Grammatical Evolution, and evolutionary computation in general, is the difficulty in dealing with deceptive problems and avoid premature convergence to local optima. Novelty search is a recent techniqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJNCR
دوره 4 شماره
صفحات -
تاریخ انتشار 2014