On the jamming phase diagram for frictionless hard-sphere packings.
نویسندگان
چکیده
We computer-generated monodisperse and polydisperse frictionless hard-sphere packings of 10(4) particles with log-normal particle diameter distributions in a wide range of packing densities φ (for monodisperse packings φ = 0.46-0.72). We equilibrated these packings and searched for their inherent structures, which for hard spheres we refer to as closest jammed configurations. We found that the closest jamming densities φ(J) for equilibrated packings with initial densities φ ≤ 0.52 are located near the random close packing limit φ(RCP); the available phase space is dominated by basins of attraction that we associate with liquid. φ(RCP) depends on the polydispersity and is ∼ 0.64 for monodisperse packings. For φ > 0.52, φ(J) increases with φ; the available phase space is dominated by basins of attraction that we associate with glass. When φ reaches the ideal glass transition density φ(g), φ(J) reaches the ideal glass density (the glass close packing limit) φ(GCP), so that the available phase space is dominated at φ(g) by the basin of attraction of the ideal glass. For packings with sphere diameter standard deviation σ = 0.1, φ(GCP) ≈ 0.655 and φ(g) ≈ 0.59. For monodisperse and slightly polydisperse packings, crystallization is superimposed on these processes: it starts at the melting transition density φ(m) and ends at the crystallization offset density φ(off). For monodisperse packings, φ(m) ≈ 0.54 and φ(off) ≈ 0.61. We verified that the results for polydisperse packings are independent of the generation protocol for φ ≤ φ(g).
منابع مشابه
Adhesive loose packings of small dry particles.
We explore adhesive loose packings of small dry spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics and statistical ensemble theory. A dimensionless adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for Ad > 1. The structura...
متن کاملRandom-close packing limits for monodisperse and polydisperse hard spheres.
We investigate how the densities of inherent structures, which we refer to as the closest jammed configurations, are distributed for packings of 10(4) frictionless hard spheres. A computational algorithm is introduced to generate closest jammed configurations and determine corresponding densities. Closest jamming densities for monodisperse packings generated with high compression rates using Lu...
متن کاملUnderconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids.
Continuing on recent computational and experimental work on jammed packings of hard ellipsoids [Donev, Science 303, 990 (2004)] we consider jamming in packings of smooth strictly convex nonspherical hard particles. We explain why an isocounting conjecture, which states that for large disordered jammed packings the average contact number per particle is twice the number of degrees of freedom per...
متن کاملUniversal jamming phase diagram in the hard-sphere limit.
We present a new formulation of the jamming phase diagram for a class of glass-forming fluids consisting of spheres interacting via finite-ranged repulsions at temperature T, packing fraction ϕ or pressure p, and applied shear stress Σ. We argue that the natural choice of axes for the phase diagram are the dimensionless quantities T/pσ³, pσ³/ε, and Σ/p, where T is the temperature, p is the pres...
متن کاملProtocol dependence of the jamming transition.
We propose a theoretical framework for predicting the protocol dependence of the jamming transition for frictionless spherical particles that interact via repulsive contact forces. We study isostatic jammed disk packings obtained via two protocols: isotropic compression and simple shear. We show that for frictionless systems, all jammed packings can be obtained via either protocol. However, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 39 شماره
صفحات -
تاریخ انتشار 2014