Beilinson’s Hodge Conjecture for K1 Revisited

نویسنده

  • James D. Lewis
چکیده

the Betti cycle class map. If m = 0, then the Hodge conjecture (classical form) implies that clr,0 is surjective. Beilinson ([Be]) once conjectured that cl U r,m is always surjective. It was Jannsen ([J3]) who was the first to find a counterexample, in the case m = 1, where the complex numbers C are used in an essential way. In contrast to this, one expects the surjectivity of clr,m in the case where U is obtained via base extension from a variety defined over a number field. It turns out that Jannsen’s counterexample is indeed very special, being the complement of a closed subscheme of codimension r in a projective algebraic manifold X . In contrast to this, we show rather easily that the corresponding limit map

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimate of dimension of Noether-Lefschetz locus for Beilinson-Hodge cycles on open complete intersections

In his lectures in [G1], M. Green gives a lucid explanation how fruitful the infinitesimal method in Hodge theory is in various aspects of algebraic geometry. A significant idea is to use Koszul cohomology for Hodge-theoretic computations. The idea originates from Griffiths work [Gri] where the Poincaré residue representation of the cohomology of a hypersurface played a crucial role in proving ...

متن کامل

2 00 2 Indecomposable K 1 and the Hodge - D - Conjecture for K 3 and Abelian Surfaces

Let X be a projective algebraic manifold, and CH(X, 1) the higher Chow group, with corresponding real regulator rk,1 ⊗ R : CH(X, 1) ⊗ R → H D (X,R(k)). If X is a general K3 surface or Abelian surface, and k = 2, we prove the Hodge-D-conjecture, i.e. the surjectivity of r2,1 ⊗ R. Since the Hodge-D-conjecture is not true for general surfaces in P of degree ≥ 5, the results in this paper provide a...

متن کامل

On Beilinson’s Hodge and Tate Conjectures for Open Complete Intersections

In his lectures in [G1], M. Green gives a lucid explanation how fruitful the infinitesimal method in Hodge theory is in various aspects of algebraic geometry. A significant idea is to use Koszul cohomology for Hodge-theoretic computations. The idea originates from Griffiths work [Gri] where the Poincaré residue representation of the cohomology of a hypersurface played a crucial role in proving ...

متن کامل

Algebraic K-theory and Special Values of L-functions: Beilinson’s Conjectures. (talk Notes)

1. Classical motivation 2 1.1. Some classical identities 2 1.2. Riemann’s zeta function 2 1.3. Dedekind zeta functions 3 1.4. Higher regulators 4 2. Motivic L-functions 4 2.1. Realizations of motives 4 2.2. L-functions 6 3. Beilinson’s conjectures on special values of L-functions 7 3.1. Elementary reduction 7 3.2. The regulator map 8 3.3. The conjectures 8 3.4. Known cases 9 4. Motivic cohomolo...

متن کامل

Beilinson’s Tate conjecture for K2 and finiteness of torsion zero-cycles on elliptic surface

2 Preliminaries 4 2.1 Syntomic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Syntomic cohomology with log poles . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Symbol maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Tate curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008