Structural Analysis and Mutant Growth Properties Reveal Distinctive Enzymatic and Cellular Roles for the Three Major L-Alanine Transaminases of Escherichia coli
نویسندگان
چکیده
In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.
منابع مشابه
Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid
Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...
متن کاملTransport systems for alanine, serine, and glycine in Escherichia coli K-12.
At least two transport systems serve for the entry of alanine, glycine, and serine into Escherichia coli. One of these systems serves mainly for glycine, d-alanine, and d-serine and to some extent for l-alanine, whereas the second serves for l-alanine and perhaps l-serine. These two transport systems have been characterized by kinetic studies and by inhibition analysis. Reciprocal plots for l-a...
متن کاملIdentification of Anise (Pimpinella anisum L.) Essential Oil Compounds and Investigation of its Effect on Some Foodborne Pathogens: Bacillus cereus, Staphylococcus aureus, Escherichia coli O157: H7and Salmonella typhimurium
Background and Objectives: Nowadays, use of essential oils in food preservation is popular by researchers not only as antimicrobial agents but also as replacements for synthetic harmful preservatives. Objectives of this study were extraction and identification of Anise essential oil (AEO) compounds as well as assessment of the oil antimicrobial properties on four Gram-negative and Gram-positive...
متن کاملEnzymatic characterization of 17 L-arabinose negative mutants of Escherichia coli.
The linear order of 17 closely linked L-arabinose negative (nonutilizing) mutant sites on the genetic map of Escherichia coli strain B/r has been established by three factor transduction experiments, and was found to correspond completely with the organization of these mutants into three functional groups (A, B, and C) on the basis of growth and accumulation studies (Gross and Englesberg, 1959)...
متن کاملSoluble Expression and Purification of Q59L Mutant L-asparaginase in the Presence of Chaperones in SHuffle™ T7 strain
Background and Aims: Q59L mutant of L-asparaginase enzyme from Escherichia coli (E. coli) has been introduced with lower side effects. This version of the enzyme might have potential applications in the treatment of leukemia patients. We utilized SHuffle T7 strain of E. coli, to produce the mutant enzyme in the presence of chaperone molecules. Materials and Methods: Q59LAsp gene was cloned in...
متن کامل