Cytosine DNA Methylation Is Found in Drosophila melanogaster but Absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Other Yeast Species
نویسندگان
چکیده
The methylation of cytosine to 5-methylcytosine (5-meC) is an important epigenetic DNA modification in many bacteria, plants, and mammals, but its relevance for important model organisms, including Caenorhabditis elegans and Drosophila melanogaster, is still equivocal. By reporting the presence of 5-meC in a broad variety of wild, laboratory, and industrial yeasts, a recent study also challenged the dogma about the absence of DNA methylation in yeast species. We would like to bring to attention that the protocol used for gas chromatography/mass spectrometry involved hydrolysis of the DNA preparations. As this process separates cytosine and 5-meC from the sugar phosphate backbone, this method is unable to distinguish DNA- from RNA-derived 5-meC. We employed an alternative LC-MS/MS protocol where by targeting 5-methyldeoxycytidine moieties after enzymatic digestion, only 5-meC specifically derived from DNA is quantified. This technique unambiguously identified cytosine DNA methylation in Arabidopsis thaliana (14.0% of cytosines methylated), Mus musculus (7.6%), and Escherichia coli (2.3%). Despite achieving a detection limit at 250 attomoles (corresponding to <0.00002 methylated cytosines per nonmethylated cytosine), we could not confirm any cytosine DNA methylation in laboratory and industrial strains of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Saccharomyces boulardii, Saccharomyces paradoxus, or Pichia pastoris. The protocol however unequivocally confirmed DNA methylation in adult Drosophila melanogaster at a value (0.034%) that is up to 2 orders of magnitude below the detection limit of bisulphite sequencing. Thus, 5-meC is a rare DNA modification in drosophila but absent in yeast.
منابع مشابه
Genome-Wide Estimates of Mutation Rates and Spectrum in Schizosaccharomyces pombe Indicate CpG Sites are Highly Mutagenic Despite the Absence of DNA Methylation
We accumulated mutations for 1952 generations in 79 initially identical, haploid lines of the fission yeast Schizosaccharomyces pombe, and then performed whole-genome sequencing to determine the mutation rates and spectrum. We captured 696 spontaneous mutations across the 79 mutation accumulation (MA) lines. We compared the mutation spectrum and rate to a recently published equivalent experimen...
متن کاملHigh conservation of the Set1/Rad6 axis of histone 3 lysine 4 methylation in budding and fission yeasts.
Histone 3 lysine 4 (H3 Lys(4)) methylation in Saccharomyces cerevisiae is mediated by the Set1 complex (Set1C) and is dependent upon ubiquitinylation of H2B by Rad6. Mutually exclusive methylation of H3 at Lys(4) or Lys(9) is central to chromatin regulation; however, S. cerevisiae lacks Lys(9) methylation. Furthermore, a different H3 Lys(4) methylase, Set 7/9, has been identified in mammals, th...
متن کاملIdentification and Comparative Analysis of the Peptidyl-Prolyl cis/trans Isomerase Repertoires of H. sapiens, D. melanogaster, C. elegans, S. cerevisiae and Sz. pombe
The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins comprises three member families that are found throughout nature and are present in all the major compartments of the cell. Their numbers appear to be linked to the number of genes in their respective genomes, although we have found the human repertoire to be smaller than expected due to a reduced cyclophilin repertoire. We show...
متن کاملGENETICS | PRIMER An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System
The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name...
متن کاملAn Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System
The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name...
متن کامل