Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line

نویسندگان

  • Sandro Matosevic
  • Brian M. Paegel
چکیده

Among the molecular milieu of the cell, the membrane bilayer stands out as a complex and elusive synthetic target. We report a microfluidic assembly line that produces uniform cellular compartments from droplet, lipid, and oil/water interface starting materials. Droplets form in a lipid-containing oil flow and travel to a junction where the confluence of oil and extracellular aqueous media establishes a flow-patterned interface that is both stable and reproducible. A triangular post mediates phase transfer bilayer assembly by deflecting droplets from oil, through the interface, and into the extracellular aqueous phase to yield a continuous stream of unilamellar phospholipid vesicles with uniform and tunable size. The size of the droplet precursor dictates vesicle size, encapsulation of small-molecule cargo is highly efficient, and the single bilayer promotes functional insertion of a bacterial transmembrane pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stratified Flow-driven Route to Monodisperse Unilamellar Lipid Vesicles

Giant unilamellar vesicles (GUVs) are good models of living cells, owing to their size and lamellarity. Compartmentalization within lipid vesicles has been exploited for the study of membrane behavior, lipid mechanics and a variety of biological processes, though their synthesis is not straightforward. We describe the development of a stratified flow driven microfluidic approach to GUV assembly...

متن کامل

On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.

Monodispersed lipid vesicles have been used as a drug delivery vehicle and a biochemical reactor. To generate monodispersed lipid vesicles in the nano- to micrometer size range, an extrusion step should be included in conventional hand-shaking method of lipid vesicle synthesis. In addition, lipid vesicles as a drug carrier still need to be improved to effectively encapsulate concentrated biomol...

متن کامل

Unilamellar vesicle formation and encapsulation by microfluidic jetting.

Compartmentalization of biomolecules within lipid membranes is a fundamental requirement of living systems and an essential feature of many pharmaceutical therapies. However, applications of membrane-enclosed solutions of proteins, DNA, and other biologically active compounds have been limited by the difficulty of forming unilamellar vesicles with controlled contents in a repeatable manner. Her...

متن کامل

Single-step microfluidic generation of cell-sized giant unilamellar vesicles: Characterization and dielectrophoretic patterning and sorting

Giant Unilamellar Vesicles (GUV) have the potential to play a dominating role in future scientific efforts to understand and model biological systems through the creation of artificial cells. GUV:s span a wide range of possible applications that include their use as biosensors, cell encapsulation agents and biomicroreactors. In order to allow GUV:s to reach their full potential, efficient, reli...

متن کامل

Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses

Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two cate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2011