Asymmetric Wnt Pathway Signaling Facilitates Stem Cell-Like Divisions via the Nonreceptor Tyrosine Kinase FRK-1 in Caenorhabditis elegans.
نویسندگان
چکیده
Asymmetric cell division is critical during development, as it influences processes such as cell fate specification and cell migration. We have characterized FRK-1, a homolog of the mammalian Fer nonreceptor tyrosine kinase, and found it to be required for differentiation and maintenance of epithelial cell types, including the stem cell-like seam cells of the hypodermis. A genomic knockout of frk-1, allele ok760, results in severely uncoordinated larvae that arrest at the L1 stage and have an excess number of lateral hypodermal cells that appear to have lost asymmetry in the stem cell-like divisions of the seam cell lineage. frk-1(ok760) mutants show that there are excess lateral hypodermal cells that are abnormally shaped and smaller in size compared to wild type, a defect that could be rescued only in a manner dependent on the kinase activity of FRK-1. Additionally, we observed a significant change in the expression of heterochronic regulators in frk-1(ok760) mutants. However, frk-1(ok760) mutants do not express late, nonseam hypodermal GFP markers, suggesting the seam cells do not precociously differentiate as adult-hyp7 cells. Finally, our data also demonstrate a clear role for FRK-1 in seam cell proliferation, as eliminating FRK-1 during the L3-L4 transition results in supernumerary seam cell nuclei that are dependent on asymmetric Wnt signaling. Specifically, we observe aberrant POP-1 and WRM-1 localization that is dependent on the presence of FRK-1 and APR-1. Overall, our data suggest a requirement for FRK-1 in maintaining the identity and proliferation of seam cells primarily through an interaction with the asymmetric Wnt pathway.
منابع مشابه
Repression of Wnt signaling by a Fer-type nonreceptor tyrosine kinase.
The Wnt signaling pathway must be properly modulated to ensure an appropriate output: pathological conditions result from either insufficient or excessive levels of Wnt signal. For example, hyperactivation of the Wnt pathway is associated with various cancers and subnormal Wnt signaling can lead to increased invasiveness of tumor cells. We found that the Caenorhabditis elegans ortholog of the F...
متن کاملThe tumor suppressor APC differentially regulates multiple β-catenins through the function of axin and CKIα during C. elegans asymmetric stem cell divisions.
The APC tumor suppressor regulates diverse stem cell processes including gene regulation through Wnt-β-catenin signaling and chromosome stability through microtubule interactions, but how the disparate functions of APC are controlled is not well understood. Acting as part of a Wnt-β-catenin pathway that controls asymmetric cell division, Caenorhabditis elegans APC, APR-1, promotes asymmetric nu...
متن کاملControl of cell polarity by noncanonical Wnt signaling in C. elegans.
The three Caenorhabditis elegans beta-catenin each function in distinct processes: BAR-1 in canonical Wnt signaling that controls cell fates and cell migrations, HMP-2 in cell adhesion and WRM-1 in Wnt signaling pathways that function in conjunction with a mitogen-activated kinase (MAPK) pathway to control the orientations, or cell polarities, of cells that undergo asymmetric cell divisions. In...
متن کاملThe long and the short of Wnt signaling in C. elegans.
The simplicity of C. elegans makes it an outstanding system to study the role of Wnt signaling in development. Many asymmetric cell divisions in C. elegans require the Wnt/beta-catenin asymmetry pathway. Recent studies confirm that SYS-1 is a structurally and functionally divergent beta-catenin, and implicate lipids and retrograde trafficking in maintenance of WRM-1/beta-catenin asymmetry. Wnts...
متن کاملThe tumor suppressor APC differentially regulates multiple b-catenins through the function of axin and CKIa during C. elegans asymmetric stem cell divisions
The APC tumor suppressor regulates diverse stem cell processes including gene regulation through Wnt–b-catenin signaling and chromosome stability through microtubule interactions, but how the disparate functions of APC are controlled is not well understood. Acting as part of a Wnt–b-catenin pathway that controls asymmetric cell division, Caenorhabditis elegans APC, APR-1, promotes asymmetric nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 201 3 شماره
صفحات -
تاریخ انتشار 2015