Cell Guidance on Nanogratings: A Computational Model of the Interplay between PC12 Growth Cones and Nanostructures
نویسندگان
چکیده
BACKGROUND Recently, the effects of nanogratings have been investigated on PC12 with respect to cell polarity, neuronal differentiation, migration, maturation of focal adhesions and alignment of neurites. METHODOLOGY/PRINCIPAL FINDINGS A synergistic procedure was used to study the mechanism of alignment of PC12 neurites with respect to the main direction of nanogratings. Finite Element simulations were used to qualitatively assess the distribution of stresses at the interface between non-spread growth cones and filopodia, and to study their dependence on filopodial length and orientation. After modelling all adhesions under non-spread growth cone and filopodial protrusions, the values of local stress maxima resulted from the length of filopodia. Since the stress was assumed to be the main triggering cause leading to the increase and stabilization of filopodia, the position of the local maxima was directly related to the orientation of neurites. An analytic closed form equation was then written to quantitatively assess the average ridge width needed to achieve a given neuritic alignment (R(2) = 0.96), and the alignment course, when the ridge depth varied (R(2) = 0.97). A computational framework was implemented within an improved free Java environment (CX3D) and in silico simulations were carried out to reproduce and predict biological experiments. No significant differences were found between biological experiments and in silico simulations (alignment, p = 0.3571; tortuosity, p = 0.2236) with a standard level of confidence (95%). CONCLUSIONS/SIGNIFICANCE A mechanism involved in filopodial sensing of nanogratings is proposed and modelled through a synergistic use of FE models, theoretical equations and in silico simulations. This approach shows the importance of the neuritic terminal geometry, and the key role of the distribution of the adhesion constraints for the cell/substrate coupling process. Finally, the effects of the geometry of nanogratings were explicitly considered in cell/surface interactions thanks to the analytic framework presented in this work.
منابع مشابه
Mutual interplay between interactions of pi electrons with simultaneous σ-hole interactions: A computational Study
In this study, the role of interaction of pi electrons on the strength of simultaneous σ-hole interactions (pnicogen, chalcogen and halogen bonds) is investigated using the quantum chemical calculations. X-ben||TAZ∙∙∙Y1,Y2,Y3 complexes (X = CN, F, Cl, Br, CH3 , OH and NH2, TAZ= s-triazine and Y1,Y2 and Y3 denotes PH2F, HSF, and ClF molecules) is introduced as a model. The results show that inte...
متن کاملVinculin-deficient PC12 cell lines extend unstable lamellipodia and filopodia and have a reduced rate of neurite outgrowth
We have studied the role of vinculin in regulating integrin-dependent neurite outgrowth in PC12 cells, a neuronal cell line. Vinculin is a cytoskeletal protein believed to mediate interactions between integrins and the actin cytoskeleton. In differentiated PC12 cells, the cell body, the neurite, and the growth cone contain vinculin. Within the growth cone, both the proximal region of "consolida...
متن کاملVaricones and Growth Cones: Two Neurite Terminals in PC12 Cells
The rat adrenal pheochromocytoma PC12 cell line is one of the traditional models for the study of neurite outgrowth and growth cone behavior. To clarify to what extent PC12 neurite terminals can be compared to neuronal growth cones, we have analyzed their morphology and protein distribution in fixed PC12 cells by immunocytochemistry. Our results show that that PC12 cells display a special kind ...
متن کاملA hybrid computational model to predict chemotactic guidance of growth cones
The overall strategy used by growing axons to find their correct paths during the nervous system development is not yet completely understood. Indeed, some emergent and counterintuitive phenomena were recently described during axon pathfinding in presence of chemical gradients. Here, a novel computational model is presented together with its ability to reproduce both regular and counterintuitiv...
متن کاملKLHL1/MRP2 Mediates Neurite Outgrowth in a Glycogen Synthase Kinase 3 -Dependent Manner
The actin-based cytoskeleton is essential for the generation and maintenance of cell polarity, cellular motility, and the formation of neural cell processes. MRP2 is an actin-binding protein of the kelch-related protein family. While MRP2 has been shown to be expressed specifically in brain, its function is still unknown. Here, we report that in neuronal growth factor (NGF)-induced PC12 cells, ...
متن کامل