Oxidative modification of lipoic acid by HNE in Alzheimer disease brain☆

نویسندگان

  • Sarita S. Hardas
  • Rukhsana Sultana
  • Amy M. Clark
  • Tina L. Beckett
  • Luke I. Szweda
  • M. Paul Murphy
  • D. Allan Butterfield
چکیده

Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

منابع مشابه

Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal.

Previous research has established that 4-hydroxy-2-nonenal (HNE), a highly toxic product of lipid peroxidation, is a potent inhibitor of mitochondrial respiration. HNE exerts its effects on respiration by inhibiting alpha-ketoglutarate dehydrogenase (KGDH). Because of the central role of KGDH in metabolism and emerging evidence that free radicals contribute to mitochondrial dysfunction associat...

متن کامل

New Insights into the Effect of Diabetes and Obesity in Alzheimer’s Disease

Abstract Alzheimer’s disease (AD) is the most common cause of dementia in elderly people. The prevalence of Alzheimer diseases is increasing in the world due to population aging. Metabolic disease such as diabetes and obesity play important role in Alzheimer disease. Hyperglycemia can play important role in brain damage. It causes cognitive impairments, functional and structural alterations in...

متن کامل

Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts.

In this study, we evaluated the effect of lipoic acid (LA) and N-acetyl cysteine (NAC) on oxidative [4-hydroxy-2-nonenal, N(epsilon)-(carboxymethyl)lysine and heme oxygenase-1] and apoptotic (caspase 9 and Bax) markers in fibroblasts from patients with Alzheimer disease (AD) and age-matched and young controls. AD fibroblasts showed the highest levels of oxidative stress, and the antioxidants, l...

متن کامل

Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases

Alpha-lipoic acid is a naturally occurring substance, essential for the function of different enzymes that take part in mitochondria's oxidative metabolism. It is believed that alpha-lipoic acid or its reduced form, dihydrolipoic acid have many biochemical functions acting as biological antioxidants, as metal chelators, reducers of the oxidized forms of other antioxidant agents such as vitamin ...

متن کامل

Membrane-mediated amyloidogenesis and the promotion of oxidative lipid damage by amyloid beta proteins.

Evidence of oxidative stress and the accumulation of fibrillar amyloid beta proteins (Abeta) in senile plaques throughout the cerebral cortex are consistent features in the pathology of Alzheimer disease. To define a mechanistic link between these two processes, various aspects of the relationship between oxidative lipid membrane damage and amyloidogenesis were characterized by chemical and phy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013