Feature adaptation using projection
نویسنده
چکیده
In this paper we consider the use of non-linear methods for feature adaptation to reduce the mismatch between test and training conditions. The non-linearity is introduced by using the posteriors of a set of Gaussians to adapt the original features. Parameters are estimated to maximize the likelihood of the test data. The modeling framework used is based on the fMPEmodels [1]. We observe significant gains (17% relative) on a test data base recorded in a car. We also see significant gains on top of FMLLR (38% relative over the baseline and 8.5% relative over FMLLR).
منابع مشابه
A novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملIsolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...
متن کاملLinear feature space projections for speaker adaptation
We extend the well-known technique of constrained Maximum Likelihood Linear Regression (MLLR) to compute a projection (instead of a full rank transformation) on the feature vectors of the adaptation data. We model the projected features with phone-dependent Gaussian distributions and also model the complement of the projected space with a single class-independent, speaker-specific Gaussian dist...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملLocality Preserving Projection for Domain Adaptation with Multi-Objective Learning
In many practical cases, we need to generalize a model trained in a source domain to a new target domain. However, the distribution of these two domains may differ very significantly, especially sometimes some crucial target features may not have support in the source domain. This paper proposes a novel locality preserving projection method for domain adaptation task, which can find a linear ma...
متن کامل