Validity of Nonlinear Geometric Optics for Entropy Solutions of Multidimensional Scalar Conservation Laws
نویسندگان
چکیده
Nonlinear geometric optics with various frequencies for entropy solutions only in L∞ of multidimensional scalar conservation laws is analyzed. A new approach to validate nonlinear geometric optics is developed via entropy dissipation through scaling, compactness, homogenization, and L–stability. New multidimensional features are recognized, especially including nonlinear propagations of oscillations with high frequencies. The validity of nonlinear geometric optics for entropy solutions in L∞ of multidimensional scalar conservation laws is justified.
منابع مشابه
High Frequency Waves and the Maximal Smoothing Effect for Nonlinear Scalar Conservation Laws
The article first studies the propagation of well prepared high frequency waves with small amplitude ε near constant solutions for entropy solutions of multidimensional nonlinear scalar conservation laws. Second, such oscillating solutions are used to highlight a conjecture of Lions, Perthame, Tadmor, ([23]), about the maximal regularizing effect for nonlinear conservation laws. For this purpos...
متن کاملWeakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws by Gui - Qiang Chen University of Oxford Wei Xiang University of Oxford
We present a new approach to analyze the validation of weakly nonlinear geometric optics for entropy solutions of nonlinear hyperbolic systems of conservation laws whose eigenvalues are allowed to have constant multiplicity and corresponding characteristic fields to be linearly degenerate. The approach is based on our careful construction of more accurate auxiliary approximation to weakly nonli...
متن کاملStructure of Entropy Solutions for Multi{dimensional Scalar Conservation Laws
An entropy solution u of a multi{dimensional scalar conservation law is not necessarily in BV , even if the conservation law is genuinely nonlinear. We show that u nevertheless has the structure of a BV {function in the sense that the shock location is codimension{one rectiiable. This result highlights the regularizing eeect of genuine non-linearity in a qualitative way; it is based on the loca...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملMeasure-Theoretic Analysis and Nonlinear Conservation Laws
We discuss some recent developments and trends of applying measure-theoretic analysis to the study of nonlinear conservation laws. We focus particularly on entropy solutions without bounded variation and Cauchy fluxes on oriented surfaces which are used to formulate the balance law. Our analysis employs the Gauss-Green formula and normal traces for divergence-measure fields, Young measures and ...
متن کامل