Multilinear Subspace Regression: An Orthogonal Tensor Decomposition Approach
نویسندگان
چکیده
A multilinear subspace regression model based on so called latent variable decomposition is introduced. Unlike standard regression methods which typically employ matrix (2D) data representations followed by vector subspace transformations, the proposed approach uses tensor subspace transformations to model common latent variables across both the independent and dependent data. The proposed approach aims to maximize the correlation between the so derived latent variables and is shown to be suitable for the prediction of multidimensional dependent data from multidimensional independent data, where for the estimation of the latent variables we introduce an algorithm based on Multilinear Singular Value Decomposition (MSVD) on a specially defined cross-covariance tensor. It is next shown that in this way we are also able to unify the existing Partial Least Squares (PLS) and N-way PLS regression algorithms within the same framework. Simulations on benchmark synthetic data confirm the advantages of the proposed approach, in terms of its predictive ability and robustness, especially for small sample sizes. The potential of the proposed technique is further illustrated on a real world task of the decoding of human intracranial electrocorticogram (ECoG) from a simultaneously recorded scalp electroencephalograph (EEG).
منابع مشابه
Multilinear Subspace Analysis of Image Ensembles
Multilinear algebra, the algebra of higher-order tensors, offers a potent mathematical framework for analyzing ensembles of images resulting from the interaction of any number of underlying factors. We present a dimensionality reduction algorithm that enables subspace analysis within the multilinear framework. This N -mode orthogonal iteration algorithm is based on a tensor decomposition known ...
متن کاملMusic Genre Classification: A Multilinear Approach
In this paper, music genre classification is addressed in a multilinear perspective. Inspired by a model of auditory cortical processing, multiscale spectro-temporal modulation features are extracted. Such spectro-temporal modulation features have been successfully used in various content-based audio classification tasks recently, but not yet in music genre classification. Each recording is rep...
متن کاملCommon and Discriminative Subspace Kernel-Based Multiblock Tensor Partial Least Squares Regression
In this work, we introduce a new generalized nonlinear tensor regression framework called kernel-based multiblock tensor partial least squares (KMTPLS) for predicting a set of dependent tensor blocks from a set of independent tensor blocks through the extraction of a small number of common and discriminative latent components. By considering both common and discriminative features, KMTPLS effec...
متن کاملFeature Level Multiple Model Fusion Using Multilinear Subspace Analysis with Incomplete Training Set and Its Application to Face Image Analysis
In practical applications of pattern recognition and computer vision, the performance of many approaches can be improved by using multiple models. In this paper, we develop a common theoretical framework for multiple model fusion at the feature level using multilinear subspace analysis (also known as tensor algebra). One disadvantage of the multilinear approach is that it is hard to obtain enou...
متن کاملAn Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors
We consider the problem of low-rank decomposition of incomplete multiway tensors. Since many real-world data lie on an intrinsically low dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an N th-order tensor in ...
متن کامل