Akt-dependent activation of Erk by cyclin D1b contributes to cell invasiveness and tumorigenicity.
نویسندگان
چکیده
A total of two major isoforms, cyclin D1a and cyclin D1b, are generated from the human cyclin D1 gene by alternative splicing. Cyclin D1b is scarcely expressed in normal tissues; however, it is expressed at a high frequency in certain types of cancerous tissue. The present authors previously constructed cyclin D1b transgenic (Tg) mice and identified rectal tumors, including adenocarcinoma and sessile serrated adenoma, in 62.5% of female Tg mice. In addition, the present authors indicated that cyclin D1b expression enhances phosphorylation of extracellular signal-regulated kinase (Erk) in these rectal tumors, and in mouse embryonic fibroblast (MEF) cells and human 293T cells. In the present study, it was initially demonstrated that cyclin D1b has the ability to enhance cell invasiveness by itself; it additionally increases cell invasiveness, anchorage-independent growth and tumorigenicity in cooperation with an activated K-ras oncogene in MEF cells. Phosphorylation of Akt was increased in cyclin D1b-expressing MEF cells and in the rectal tumor tissues of cyclin D1b Tg mice. Phosphorylation of Akt was also enhanced by transfection of cyclin D1b, but not cyclin D1a, in human 293T cells. Treatment with an Akt inhibitor suppressed phosphorylation of Erk in 293T cells expressing cyclin D1b and D1bTgRT cells established from rectal cancer of the cyclin D1b Tg mouse. Furthermore, the Akt inhibitor suppressed the invasiveness of D1bTgRT cells and the tumor growth of these cells in nude mice when the Akt inhibitor was injected into the tumors. These results indicate that cyclin D1b activates Erk through Akt, and that activation of Akt contributes to the tumorigenicity of the cyclin D1b Tg mice. Inhibitors targeting the phosphoinositide 3-kinase/Akt signaling pathway are thus expected to have therapeutic potential in a variety of human cancer types expressing cyclin D1b.
منابع مشابه
CCL21/CCR7 Promotes G2/M Phase Progression via the ERK Pathway in Human Non-Small Cell Lung Cancer Cells
C-C chemokine receptor 7 (CCR7) contributes to the survival of certain cancer cell lines, but its role in the proliferation of human non-small cell lung cancer (NSCLC) cells remains vague. Proliferation assays performed on A549 and H460 NSCLC cells using Cell Counting Kit-8 indicated that activation of CCR7 by its specific ligand, exogenous chemokine ligand 21 (CCL21), was associated with a sig...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملCyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation.
Cyclin D1 is a multifaceted regulator of both transcription and cell-cycle progression that exists in two distinct isoforms, cyclin D1a and D1b. In the prostate, cyclin D1a acts through discrete mechanisms to negatively regulate androgen receptor (AR) activity and thus limit androgen-dependent proliferation. Accordingly, cyclin D1a is rarely overexpressed in prostatic adenocarcinoma and holds l...
متن کاملPI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کاملPI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology letters
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2016