Systematic characterization of high mass accuracy influence on false discovery and probability scoring in peptide mass fingerprinting.
نویسندگان
چکیده
Whereas the bearing of mass measurement error on protein identification is sometimes underestimated, uncertainty in observed peptide masses unavoidably translates to ambiguity in subsequent protein identifications. Although ongoing instrumental advances continue to make high accuracy mass spectrometry (MS) increasingly accessible, many proteomics experiments are still conducted with rather large mass error tolerances. In addition, the ranking schemes of most protein identification algorithms do not include a meaningful incorporation of mass measurement error. This article provides a critical evaluation of mass error tolerance as it pertains to false positive peptide and protein associations resulting from peptide mass fingerprint (PMF) database searching. High accuracy, high resolution PMFs of several model proteins were obtained using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Varying levels of mass accuracy were simulated by systematically modulating the mass error tolerance of the PMF query and monitoring the effect on figures of merit indicating the PMF quality. Importantly, the benefits of decreased mass error tolerance are not manifest in Mowse scores when operating at tolerances in the low parts-per-million range but become apparent with the consideration of additional metrics that are often overlooked. Furthermore, the outcomes of these experiments support the concept that false discovery is closely tied to mass measurement error in PMF analysis. Clear establishment of this relation demonstrates the need for mass error-aware protein identification routines and argues for a more prominent contribution of high accuracy mass measurement to proteomic science.
منابع مشابه
Context-sensitive markov models for peptide scoring and identification from tandem mass spectrometry.
Peptide and protein identification via tandem mass spectrometry (MS/MS) lies at the heart of proteomic characterization of biological samples. Several algorithms are able to search, score, and assign peptides to large MS/MS datasets. Most popular methods, however, underutilize the intensity information available in the tandem mass spectrum due to the complex nature of the peptide fragmentation ...
متن کاملMS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra
Today's highly accurate spectra provided by modern tandem mass spectrometers offer considerable advantages for the analysis of proteomic samples of increased complexity. Among other factors, the quantity of reliably identified peptides is considerably influenced by the peptide identification algorithm. While most widely used search engines were developed when high-resolution mass spectrometry d...
متن کاملA Heuristic method for assigning a false-discovery rate for protein identifications from Mascot database search results.
MS/MS and database searching has emerged as a valuable technology for rapidly analyzing protein expression, localization, and post-translational modifications. The probability-based search engine Mascot has found widespread use as a tool to correlate tandem mass spectra with peptides in a sequence database. Although the Mascot scoring algorithm provides a probability-based model for peptide ide...
متن کاملStatistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling.
Reliable statistical validation of peptide and protein identifications is a top priority in large-scale mass spectrometry based proteomics. PeptideProphet is one of the computational tools commonly used for assessing the statistical confidence in peptide assignments to tandem mass spectra obtained using database search programs such as SEQUEST, MASCOT, or X! TANDEM. We present two flexible meth...
متن کاملScoring methods in MALDI peptide mass fingerprinting: ChemScore, and the ChemApplex program.
No universally accepted score is currently available to determine when a matrix-assisted laser desorption ionization (MALDI) peptide mass fingerprint (PMF) experiment has been successfully carried out. We describe a software program (ChemApplex) based on a calculated parameter (Combined Protein Score) that takes into account (1) peak intensity, (2) the mass accuracy of the match, and (3) ChemSc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical biochemistry
دوره 372 2 شماره
صفحات -
تاریخ انتشار 2008