The Magnetohydrodynamics of Supersonic Gas Clouds: MHD Cosmic Bullets and Wind-Swept Clumps

نویسندگان

  • T. W. Jones
  • Dongsu Ryu
چکیده

We report an extensive set of two-dimensional MHD simulations exploring the role and evolution of magnetic fields in the dynamics of supersonic plasma clumps. We examine the influence of both ambient field strength and orientation on the problem. Of those two characteristics, field orientation is far more important in the cases we have considered with β0 = pg/pb ≥ 1. That is due to the geometry-sensitivity of field stretching/amplification from large-scale shearing motions around the bullet. When the ambient magnetic field is transverse to the bullet motion, even a very modest field, well below equipartition strength, can be amplified by field line stretching around the bullet within a couple of bullet crushing times so that Maxwell stresses become comparable to the ram pressure associated with the bullet motion. The possibility is discussed that those situations might lead to large, induced electric potentials capable of accelerating charged particles. When the ambient field is aligned to the bullet motion, on the other hand, reconnection-prone topologies develop that shorten the stretched field and release much of the excess energy it contains. In this geometry, the Maxwell stresses on the bullet never approach the ram pressure level. In both cases, however, the presence of a field with even moderate initial strength acts to help the flow realign itself around the bullet into a smoother, more laminar form. That reduces bullet fragmentation tendencies caused by destructive instabilities. Eddies seem less effective at field amplification than flows around the bullet, because fields within eddies tend to be expelled to the eddy perimeters. Similar effects cause the magnetic field within the bullet itself to be reduced below its initial value over time. For oblique fields, we expect that the transverse field cases modeled here are more generally relevant. What counts is whether field lines threading the face of the bullet are swept around it in a fashion that folds them (leading to reconnection) or Department of Astronomy, University of Minnesota, Minneapolis, MN 55455 Department of Astronomy & Space Science, Chungnam National University, Daejeon 305-764, Korea present address: Department of Applied Physics, Cornell University, Ithaca, NY 14853 e-mail: [email protected] e-mail: [email protected] e-mail: [email protected] Submitted to the Astrophysical Journal

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Clumps in Molecular Cloud Models: Mass Spectrum, Shapes, Alignment and Rotation

Observations reveal concentrations of molecular line emission on the sky, called “clumps,” in dense, star-forming molecular clouds. These clumps are believed to be the eventual sites of star formation. We study the three-dimensional analogs of clumps using a set of self-consistent, time-dependent numerical models of molecular clouds. The models follow the decay of initially supersonic turbulenc...

متن کامل

Two-fluid Mhd Simulations of Converging Hi Flows in the Interstellar Medium. Ii: Are Molecular Clouds Generated Directly from Warm Neutral Medium?

Formation of interstellar clouds as a consequence of thermal instability is studied using twodimensional two-fluid magnetohydrodynamic simulations. We consider the situation of converging, supersonic flows of warm neutral medium in the interstellar medium that generate a shocked slab of thermally unstable gas in which clouds form. We found, as speculated in paper I, that in the shocked slab mag...

متن کامل

Self-similar evolution of wind-blown bubbles with mass loading by hydrodynamic ablation

We present similarity solutions for adiabatic bubbles that are blown by winds having time independent mechanical luminosities and that are each mass-loaded by the hydrodynamic ablation of distributed clumps. The mass loading is ‘switched-on’ at a specified radius (with free-expansion of the wind interior to this point) and injects mass at a rate per unit volume proportional to Mr where δ = 4/3 ...

متن کامل

Density Scaling and Anisotropy in Supersonic Mhd Turbulence

We study the statistics of density for supersonic turbulence in a medium with magnetic pressure larger than the gaseous pressure. This study is motivated by molecular cloud research. Our simulations exhibit clumpy density structures, which contrast increases with the Mach number. At 10 Machs densities of some clumps are three orders of magnitude higher than the mean density. These clumps give r...

متن کامل

Piecewise parabolic method on a local stencil for magnetized supersonic turbulence simulation

Stable, accurate, divergence-free simulation of magnetized supersonic turbulence is a severe test of numerical MHD schemes and has been surprisingly difficult to achieve due to the range of flow conditions present. Here we present a new, higher order-accurate, low dissipation numerical method which requires no additional dissipation or local ”fixes” for stable execution. We describe PPML, a loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008