Research and Development of Robotic Fish Based on Elastic Oscillation Fin System

نویسندگان

  • Ikuo Yamamoto
  • Tomokazu Hiratsuka
چکیده

The authors research and develop a flapping wing type robotic fish (shark ray robot) with flexible tail fin as an advanced underwater vehicle. The flapping wing consists of multijoints mechanism to get lift force and rotation moment for high maneuvering characteristics of motion. The tail fin is designed by elastic oscillating system and developed to produce strong propulsion force for higher speed maneuvering. In addition, a trim balance mechanism is designed to get the trim of pitch motion. The developed the shark ray robot has higher maneuverability by strong lift force of flapping wing and propulsion force of tail fin. Also, the shark ray robot can cruise quietly and avoid twining by seaweeds, and is effective for environmental parameter sensing and acquisition. The shark ray robot was designed by elastic oscillating fin system and the model with tail fin and main wings has been constructed. Then, its effectiveness has been successfully confirmed by numerical simulation and tank test. In addition, the authors proposed an effective fin drive due to resonance, and had positive outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thrust Analysis On A Single-Drive Robotic Fish With An Elastic Joint

This work simplified tuna’s swimming mode, then designed a single-drive robotic fish propulsion mechanism which including an elastic joint, and established the dynamics model of the mechanism. The thrust, resistance, resistance power on different peduncle oscillation parameters, and torsional stiffness of the caudal fin joint was simulated. The average thrust, maximum resistance and the average...

متن کامل

The Structural Design and Control System of a Caudal Fin Robotic Fish

This article took the trevally crescent-shaped caudal fin mode fishes as bionic object, based on the biological observation and bionic research, established the fish swimming model of trevally crescentshaped caudal fin mode, and designed the three degrees of freedom, tailtail fins pectoral fin, robotic fish. It detailed focuses on the fish propulsion theory and robotic fish overall design, incl...

متن کامل

Design and Implementation of a Biomimetic Robotic Fish

Design and Implementation of a Biomimetic Robotic Fish Hongan Wang The study of biomimetic robotic fish has received a growing amount of research interest in the past several years. This thesis describes the development and testing of a novel mechanical design of a biomimetic robotic fish. The robotic fish has a structure which uses oscillating caudal fins and a pair of pectoral fins to generat...

متن کامل

Design and Control of an Embedded Vision Guided Robotic Fish with Multiple Control Surfaces

This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin i...

متن کامل

Biomimetic Motion Planning of an Undulating Robotic Fish Fin

This paper presents a locomotion control implementation of a robotic system mimicking the undulating fins of fish. To mimic the actual flexible fin of a real fish, we created a ribbon fin type actuation device with a series of connecting linkages and attached it to the robotic fish. By virtue of a specially designed strip with a slider, each link is able to turn and slide with respect to the ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012