Generalized Counting for Lifted Variable Elimination
نویسندگان
چکیده
Lifted probabilistic inference methods exploit symmetries in the structure of probabilistic models to perform inference more efficiently. In lifted variable elimination, the symmetry among a group of interchangeable random variables is captured by counting formulas, and exploited by operations that handle such formulas. In this paper we generalize the structure of counting formulas and present a set of inference operators that introduce and eliminate these formulas from the model. This generalization expands the range of problems that can be solved in a lifted way. Our work is closely related to the recently introduced method of joint conversion. Due to its more fine grained formulation, however, our approach can provide more efficient solutions than joint conversion.
منابع مشابه
Lifted Variable Elimination for Probabilistic Logic Programming
Lifted inference has been proposed for various probabilistic logical frameworks in order to compute the probability of queries in a time that depends on the size of the domains of the random variables rather than the number of instances. Even if various authors have underlined its importance for probabilistic logic programming (PLP), lifted inference has been applied up to now only to relationa...
متن کاملLifted Probabilistic Inference with Counting Formulas
Lifted inference algorithms exploit repeated structure in probabilistic models to answer queries efficiently. Previous work such as de Salvo Braz et al.’s first-order variable elimination (FOVE) has focused on the sharing of potentials across interchangeable random variables. In this paper, we also exploit interchangeability within individual potentials by introducing counting formulas, which i...
متن کاملCounting and Conjunctive Queries in the Lifted Junction Tree Algorithm
Standard approaches for inference in probabilistic formalisms with first-order constructs include lifted variable elimination (LVE) for single queries. To handle multiple queries efficiently, the lifted junction tree algorithm (LJT) uses a first-order cluster representation of a knowledge base and LVE in its computations. We extend LJT with a full formal specification of its algorithm steps inc...
متن کاملOn the Completeness of Lifted Variable Elimination
Lifting aims at improving the efficiency of probabilistic inference by exploiting symmetries in the model. Various methods for lifted probabilistic inference have been proposed, but our understanding of these methods and the relationships between them is still limited, compared to their propositional counterparts. The only existing theoretical characterization of lifting is a completeness resul...
متن کاملCompleteness Results for Lifted Variable Elimination
Lifting aims at improving the efficiency of probabilistic inference by exploiting symmetries in the model. Various methods for lifted probabilistic inference have been proposed, but our understanding of these methods and the relationships between them is still limited, compared to their propositional counterparts. The only existing theoretical characterization of lifting is a completeness resul...
متن کامل